首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Owing to the fact that unmanned ground vehicles have the features of time-varying, parametric uncertainties and external disturbances, this paper mainly studies robust automatic steering control of unmanned ground vehicles. Firstly, a linear parameter varying lateral model for unmanned ground vehicle is constructed, in which the longitudinal velocity is represented by a polytope with finite vertices. Secondly, a robust gain scheduling automatic steering control scheme based on the linear matrix inequality technique is proposed to deal with the characteristics of time-varying and external disturbances. Finally, Simulation results based on Adams–Matlab joint platform using a nonlinear full vehicle model have demonstrated that the proposed control approach can simultaneously ensure the control accuracy and strong robustness of system.  相似文献   

2.
This paper presents a nonlinear model predictive control (MPC) formulation for obstacle avoidance in high-speed, large-size autono-mous ground vehicles (AGVs) with high centre of gravity (CoG) that operate in unstructured environments, such as military vehicles. The term ‘unstructured’ in this context denotes that there are no lanes or traffic rules to follow. Existing MPC formulations for passenger vehicles in structured environments do not readily apply to this context. Thus, a new nonlinear MPC formulation is developed to navigate an AGV from its initial position to a target position at high-speed safely. First, a new cost function formulation is used that aims to find the shortest path to the target position, since no reference trajectory exists in unstructured environments. Second, a region partitioning approach is used in conjunction with a multi-phase optimal control formulation to accommodate the complicated forms the obstacle-free region can assume due to the presence of multiple obstacles in the prediction horizon in an unstructured environment. Third, the no-wheel-lift-off condition, which is the major dynamical safety concern for high-speed, high-CoG AGVs, is ensured by limiting the steering angle within a range obtained offline using a 14 degrees-of-freedom vehicle dynamics model. Thus, a safe, high-speed navigation is enabled in an unstructured environment. Simulations of an AGV approaching multiple obstacles are provided to demonstrate the effectiveness of the algorithm.  相似文献   

3.
ABSTRACT

Collision avoidance and stabilisation are two of the most crucial concerns when an autonomous vehicle finds itself in emergency situations, which usually occur in a short time horizon and require large actuator inputs, together with highly nonlinear tyre cornering response. In order to avoid collision while stabilising autonomous vehicle under dynamic driving situations at handling limits, this paper proposes a novel emergency steering control strategy based on hierarchical control architecture consisting of decision-making layer and motion control layer. In decision-making layer, a dynamic threat assessment model continuously evaluates the risk associated with collision and destabilisation, and a path planner based on kinematics and dynamics of vehicle system determines a collision-free path when it suddenly encounters emergency scenarios. In motion control layer, a lateral motion controller considering nonlinearity of tyre cornering response and unknown external disturbance is designed using tyre lateral force estimation-based backstepping sliding-mode control to track a collision-free path, and to ensure the robustness and stability of the closed-loop system. Both simulation and experiment results show that the proposed control scheme can effectively perform an emergency collision avoidance manoeuvre while maintaining the stability of autonomous vehicle in different running conditions.  相似文献   

4.
The coordinated control of vehicle actuators is gaining more and more importance as new platforms are becoming available, with chassis endowed with many different actuators that may help controlling the vehicle motion. Furthermore, wheel individual motors allow using a single system to apply both positive and negative torques at the wheels, which can be actuated independently one from the other. In electric vehicles (EVs), moreover, such a freedom in the actuation mechanisms opens the way to the combined optimisation of performance and energy consumption issues. In this paper, the problem of minimum-time manoeuvring in EVs is addressed, and the proposed strategy is compared against a benchmark, a-causal optimal solution showing that only a negligible loss of performance is experienced.  相似文献   

5.
This paper investigates the level of model fidelity needed in order for a model predictive control (MPC)-based obstacle avoidance algorithm to be able to safely and quickly avoid obstacles even when the vehicle is close to its dynamic limits. The context of this work is large autonomous ground vehicles that manoeuvre at high speed within unknown, unstructured, flat environments and have significant vehicle dynamics-related constraints. Five different representations of vehicle dynamics models are considered: four variations of the two degrees-of-freedom (DoF) representation as lower fidelity models and a fourteen DoF representation with combined-slip Magic Formula tyre model as a higher fidelity model. It is concluded that the two DoF representation that accounts for tyre nonlinearities and longitudinal load transfer is necessary for the MPC-based obstacle avoidance algorithm in order to operate the vehicle at its limits within an environment that includes large obstacles. For less challenging environments, however, the two DoF representation with linear tyre model and constant axle loads is sufficient.  相似文献   

6.
In this paper, decoupling control with H performance for four-wheel steering (4WS) vehicles under varying longitudinal velocity is studied. A novel control scheme for a nonlinear model of three states, respectively, the longitudinal and lateral velocities, and yaw rate, is proposed to address this issue. The scheme is composed of two varying-parameter controllers designing problems for both longitudinal and lateral systems with coupling performance. Varying parameters of both these controllers depend only on longitudinal velocity. Controlled by these controllers, the longitudinal system is decoupled with lateral velocity and yaw rate, and the lateral system is input–output decoupling with H performance. In addition, feedback signals are the longitudinal velocity and yaw rate, hence observations or measurements of lateral velocity are not necessary. Simulations show that vehicles controlled by our scheme are input–output diagonal decoupling and execute very well while longitudinal velocity varies in a large range, coupling appears between longitudinal and lateral systems, and external disturbances do exist. In summary, this control scheme can improve handling characteristics, safety and comfort proved from theory to practice in this paper.  相似文献   

7.
This paper presents a new application of active rear-wheel steering control to improve the lateral vehicle behaviour. In the state of the art, yaw or lateral velocity is used as control variable that means one degree of freedom being not directly controlled. A worse subjective impressions due to movements in the rear end of the vehicle during strong counter-steering are a consequence. To avoid this effect in urban surroundings, an innovative structure to control the pivot point distance of the vehicle is proposed. In this case the coupled elementary states yaw and lateral velocity can be influenced based on a higher level criteria. Analysis show that pivot point fixing provides a comprehensible reference behaviour. Solving the issue of singularity during disappearing yaw movement is the basis to design a performant modified feedforward input–output linearisation. An analytic stability analysis of the internal dynamics shows system immanent limitations which do not influence the target of improving the lateral vehicle dynamics in urban manoeuvres. Finally, the advantages of pivot-based control are highlighted by a comparison with state of the art rear axle control.  相似文献   

8.
This paper proposes a robust control framework for lane-keeping and obstacle avoidance of semiautonomous ground vehicles. It presents a systematic way of enforcing robustness during the MPC design stage. A robust nonlinear model predictive controller (RNMPC) is used to help the driver navigating the vehicle in order to avoid obstacles and track the road centre line. A force-input nonlinear bicycle vehicle model is developed and used in the RNMPC control design. A robust invariant set is used in the RNMPC design to guarantee that state and input constraints are satisfied in the presence of disturbances and model error. Simulations and experiments on a vehicle show the effectiveness of the proposed framework.  相似文献   

9.
This paper presents a steering control method for lane-following in a vehicle using an image sensor. With each image frame acquired from the sensor, the steering control method determines target position and direction, and constructs a travel path from the current position to the target position either as an Arc-path or S-path. The steering angle is calculated from the travel path thus generated, and the vehicle follows the travel path via motor-control. The method was tested using a vehicle dubbed as KAV (Korea Autonomous Vehicle) along an expressway (Seoul Inner Beltway) trajectory with a variety of radii (50 m ∼ 300 m) while traveling at a speed of 60 km/h to 80 km/h. Compared with an experienced human driver, the method showed little much difference in performance in terms of lane-center deviation. The proposed method is currently employed for high speed autonomous driving as well as for stop and go traffic.  相似文献   

10.
This paper shows that, for a four-wheel steering vehicle, a proportional-integral (PI) active front steering control and a PI active rear steering control from the yaw rate error together with an additive feedforward reference signal for the vehicle sideslip angle can asymptotically decouple the lateral velocity and the yaw rate dynamics; that is the control can set arbitrary steady state values for lateral speed and yaw rate at any longitudinal speed. Moreover, the PI controls can suppress oscillatory behaviours by assigning real stable eigenvalues to a widely used linearised model of the vehicle steering dynamics for any value of longitudinal speed in understeering vehicles. In particular, the four PI control parameters are explicitly expressed in terms of the three real eigenvalues to be assigned. No lateral acceleration and no lateral speed measurements are required. The controlled system maintains the well-known advantages of both front and rear active steering controls: higher controllability, enlarged bandwidth for the yaw rate dynamics, suppressed resonances, new stable cornering manoeuvres and improved manoeuvrability. In particular, zero lateral speed may be asymptotically achieved while controlling the yaw rate: in this case comfort is improved since the phase lag between lateral acceleration and yaw rate is reduced. Also zero yaw rate can be asymptotically achieved: in this case additional stable manoeuvres are obtained in obstacle avoidance. Several simulations, including step references and moose tests, are carried out on a standard small SUV CarSim model to explore the robustness with respect to unmodelled effects such as combined lateral and longitudinal tyre forces, pitch, roll and driver dynamics. The simulations confirm the decoupling between the lateral velocity and the yaw rate and show the advantages obtained by the proposed control: reduced lateral speed or reduced yaw rate, suppressed oscillations and new stable manoeuvres.  相似文献   

11.
The new vehicle platforms for electric vehicles (EVs) that are becoming available are characterised by actuator redundancy, which makes it possible to jointly optimise different aspects of the vehicle motion. To do this, high-level control objectives are first specified and solved with appropriate control strategies. Then, the resulting virtual control action must be translated into actual actuator commands by a control allocation layer that takes care of computing the forces to be applied at the wheels. This step, in general, is quite demanding as far as computational complexity is considered. In this work, a safety-oriented approach to this problem is proposed. Specifically, a four-wheel steer EV with four in-wheel motors is considered, and the high-level motion controller is designed within a sliding mode framework with conditional integrators. For distributing the forces among the tyres, two control allocation approaches are investigated. The first, based on the extension of the cascading generalised inverse method, is computationally efficient but shows some limitations in dealing with unfeasible force values. To solve the problem, a second allocation algorithm is proposed, which relies on the linearisation of the tyre–road friction constraints. Extensive tests, carried out in the CarSim simulation environment, demonstrate the effectiveness of the proposed approach.  相似文献   

12.
ABSTRACT

This paper considers the problem of collision avoidance for road vehicles, operating at the limits of friction. A two-level modelling and control methodology is proposed, with the upper level using a friction-limited particle model for motion planning, and the lower level using a nonlinear 3DOF model for optimal control allocation. Motion planning adopts a two-phase approach: the first phase is to avoid the obstacle, the second is to recover lane keeping with minimal additional lateral deviation. This methodology differs from the more standard approach of path-planning/path-following, as there is no explicit path reference used; the control reference is a target acceleration vector which simultaneously induces changes in direction and speed. The lower level control distributes vehicle targets to the brake and steer actuators via a new and efficient method, the Modified Hamiltonian Algorithm (MHA). MHA balances CG acceleration targets with yaw moment tracking to preserve lateral stability. A nonlinear 7DOF two-track vehicle model confirms the overall validity of this novel methodology for collision avoidance.  相似文献   

13.
Many methods we have been developed to control the rear wheels of a vehicle, but most of them are designed for automobiles with four wheels. The AWS (all wheel steering) control method for articulated vehicles is currently applied only to Phileas vehicles developed by APTS, but the control algorithm for this system has yet to be reported. In the present paper, a new algorithm is proposed after the AWS ECU (electronic control unit) of the Phileas vehicle was tested and analyzed in order to understand the existing steering algorithm. The new algorithm considers the vehicle geometry, stability of handling, and safety, and can be easily applied to multi-axle vehicles. In order to verify the AWS algorithm, the trajectory and steering angles of each algorithm were compared using the commercial software ADAMS. Turning radius, swing-out, and swept path width were also investigated to determine the turning performance of the proposed algorithm.  相似文献   

14.
Vehicle steering dynamics show resonances, which depend on the longitudinal speed, unstable equilibrium points and limited stability regions depending on the constant steering wheel angle, longitudinal speed and car parameters.

The main contribution of this paper is to show that a combined decentralized proportional active front steering control and proportional-integral active rear steering control from the yaw rate tracking error can assign the eigenvalues of the linearised single track steering dynamics, without lateral speed measurements, using a standard single track car model with nonlinear tire characteristics and a non-linear first-order reference model for the yaw rate dynamics driven by the driver steering wheel input. By choosing a suitable nonlinear reference model it is shown that the responses to driver step inputs tend to zero (or reduced) lateral speed for any value of longitudinal speed: in this case the resulting controlled vehicle static gain from driver input to yaw rate differs from the uncontrolled one at higher speed. The closed loop system shows the advantages of both active front and rear steering control: higher controllability, enlarged bandwidth for the yaw rate dynamics, suppressed resonances, new stable cornering manoeuvres, enlarged stability regions, reduced lateral speed and improved manoeuvrability; in addition comfort is improved since the phase lag between lateral acceleration and yaw rate is reduced.

For the designed control law a robustness analysis is presented with respect to system failures, driver step inputs and critical car parameters such as mass, moment of inertia and front and rear cornering stiffness coefficients. Several simulations are carried out on a higher order experimentally validated nonlinear dynamical model to confirm the analysis and to explore the robustness with respect to unmodelled dynamics.  相似文献   

15.
Vehicle steering dynamics show resonances, which depend on the longitudinal speed, unstable equilibrium points and limited stability regions depending on the constant steering wheel angle, longitudinal speed and car parameters.

The main contribution of this paper is to show that a combined decentralized proportional active front steering control and proportional-integral active rear steering control from the yaw rate tracking error can assign the eigenvalues of the linearised single track steering dynamics, without lateral speed measurements, using a standard single track car model with nonlinear tire characteristics and a non-linear first-order reference model for the yaw rate dynamics driven by the driver steering wheel input. By choosing a suitable nonlinear reference model it is shown that the responses to driver step inputs tend to zero (or reduced) lateral speed for any value of longitudinal speed: in this case the resulting controlled vehicle static gain from driver input to yaw rate differs from the uncontrolled one at higher speed. The closed loop system shows the advantages of both active front and rear steering control: higher controllability, enlarged bandwidth for the yaw rate dynamics, suppressed resonances, new stable cornering manoeuvres, enlarged stability regions, reduced lateral speed and improved manoeuvrability; in addition comfort is improved since the phase lag between lateral acceleration and yaw rate is reduced.

For the designed control law a robustness analysis is presented with respect to system failures, driver step inputs and critical car parameters such as mass, moment of inertia and front and rear cornering stiffness coefficients. Several simulations are carried out on a higher order experimentally validated nonlinear dynamical model to confirm the analysis and to explore the robustness with respect to unmodelled dynamics.  相似文献   

16.
17.
This paper addresses modelling, longitudinal control design and implementation for heavy-duty vehicles (HDVs). The challenging problems here are: (a) an HDV is mass dominant with low power to mass ratio; (b) They possess large actuator delay and actuator saturation. To reduce model mismatch, it is necessary to obtain a nonlinear model which is as simple as the control design method can handle and as complicated as necessary to capture the intrinsic vehicle dynamics. A second order nonlinear vehicle body dynamical model is adopted, which is feedback linearizable. Beside the vehicle dynamics, other main dynamical components along the power-train and drive-train are also modelled, which include turbocharged diesel engine, torque converter, transmission, transmission retarder, pneumatic brake and tyre. The braking system is the most challenging part for control design, which contains three parts: Jake (engine compression) brake, air brake and transmission retarder. The modelling for each is provided. The use of engine braking effect is new complementary to Jake (compression) brake for longitudinal control, which is united with Jake brake in modelling. The control structure can be divided into upper level and lower level. Upper level control uses sliding mode control to generate the desired torque from the desired vehicle acceleration. Lower level control is divided into two branches: (a) engine control: from positive desired torque to desired fuel rate (engine control) using a static engine mapping which basically captures the intrinsic dynamic performance of the turbo-charged diesel engine; (b) brake control: from desired negative torque to generate Jake brake cylinder number to be activated and ON/OFF time periods, applied pneumatic brake pressure and applied voltage of transmission retarder. Test results are also reported.  相似文献   

18.
This paper addresses modelling, longitudinal control design and implementation for heavy-duty vehicles (HDVs). The challenging problems here are: (a) an HDV is mass dominant with low power to mass ratio; (b) They possess large actuator delay and actuator saturation. To reduce model mismatch, it is necessary to obtain a nonlinear model which is as simple as the control design method can handle and as complicated as necessary to capture the intrinsic vehicle dynamics. A second order nonlinear vehicle body dynamical model is adopted, which is feedback linearizable. Beside the vehicle dynamics, other main dynamical components along the power-train and drive-train are also modelled, which include turbocharged diesel engine, torque converter, transmission, transmission retarder, pneumatic brake and tyre. The braking system is the most challenging part for control design, which contains three parts: Jake (engine compression) brake, air brake and transmission retarder. The modelling for each is provided. The use of engine braking effect is new complementary to Jake (compression) brake for longitudinal control, which is united with Jake brake in modelling. The control structure can be divided into upper level and lower level. Upper level control uses sliding mode control to generate the desired torque from the desired vehicle acceleration. Lower level control is divided into two branches: (a) engine control: from positive desired torque to desired fuel rate (engine control) using a static engine mapping which basically captures the intrinsic dynamic performance of the turbo-charged diesel engine; (b) brake control: from desired negative torque to generate Jake brake cylinder number to be activated and ON/OFF time periods, applied pneumatic brake pressure and applied voltage of transmission retarder. Test results are also reported.  相似文献   

19.
In a connected vehicle environment, vehicles are able to communicate and exchange detailed information such as speed, acceleration, and position in real time. Such information exchange is important for improving traffic safety and mobility. This allows vehicles to collaborate with each other, which can significantly improve traffic operations particularly at intersections and freeway ramps. To assess the potential safety and mobility benefits of collaborative driving enabled by connected vehicle technologies, this study developed an optimization-based ramp control strategy and a simulation evaluation platform using VISSIM, MATLAB, and the Car2X module in VISSIM. The ramp control strategy is formulated as a constrained nonlinear optimization problem and solved by the MATLAB optimization toolbox. The optimization model provides individual vehicles with step-by-step control instructions in the ramp merging area. In addition to the optimization-based ramp control strategy, an empirical gradual speed limit control strategy is also formulated. These strategies are evaluated using the developed simulation platform in terms of average speed, average delay time, and throughput and are compared with a benchmark case with no control. The study results indicate that the proposed optimal control strategy can effectively coordinate merging vehicles at freeway on-ramps and substantially improve safety and mobility, especially when the freeway traffic is not oversaturated. The ramp control strategy can be further extended to improve traffic operations at bottlenecks caused by incidents, which cause approximately 25% of traffic congestion in the United States.  相似文献   

20.
An integrated vehicle dynamics control (IVDC) algorithm, developed for improving vehicle handling and stability under critical lateral motions, is discussed in this paper. The IVDC system utilises integral and nonsingular fast terminal sliding mode (NFTSM) control strategies and coordinates active front steering (AFS) and direct yaw moment control (DYC) systems. When the vehicle is in the normal driving situation, the AFS system provides handling enhancement. If the vehicle reaches its handling limit, both AFS and DYC are then integrated to ensure the vehicle stability. The major contribution of this paper is in improving the transient response of the vehicle yaw rate and sideslip angle tracking controllers by implementing advanced types of sliding mode strategies, namely integral terminal sliding mode and NFTSM, in the IVDC system. Simulation results demonstrate that the developed control algorithm for the IVDC system not only has strong robustness against uncertainties but also improves the transient response of the control system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号