首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Since 1990s the liner shipping industry has faced a period of restructuring and consolidation, and been confronted with a continuing increase in container vessel scale. The impact of these changes is noticeable in trade patterns, cargo handling methods and shipping routes, in short ‘operations’. After listing factors influencing size, growth in container ship size is explained by economies of scale in deploying larger vessels. In order to quantify economies of scale, this paper uses the liner service cash flow model. A novelty in the model is the inclusion of +6000-20-foot Equivalent Unit (TEU) vessels and the distinction in costs between single and twin propeller units on ships. The results illustrate that scale economies have been – and will continue to be – the driving force behind the deployment of larger container vessels. The paper then assesses the link between ship size and operations, given current discussions about the increase in container vessel scale. It is found that (a) ship size and operations are linked; (b) optimal ship size depends on transport segment (deep-sea vs. short-sea shipping, SSS), terminal type (transhipment terminals vs. other terminals), trade lane (East-West vs. North-South trades) and technology; and (c) a ship optimal for one trade can be suboptimal for another.  相似文献   

2.
Shipping has traditionally been viewed as the least environmentally damaging mode of freight transport. Recent studies have increasingly questioned this perception, as attention has focused on both the greenhouse gas emissions (mainly CO2) and the emission of health-damaging pollutants (such as sulphur, nitrogen oxides and particulates) by ships. This paper reviews the available evidence on the atmospheric emissions of shipping. It proposes that the profit objective has prompted the pursuit of greater fuel efficiency within the sector, but that reliance on market forces alone is insufficient to deliver on the environmental imperative. The paper outlines the current and planned regulatory regime for the atmospheric emissions from ships and posits that greater, and more diverse, market regulation is required. Alternative general approaches to regulatory compliance are categorised as ‘alternative sources of energy’ or ‘abatement technologies’ and the characteristics of a range of specific options are analysed. The paper concludes that although the shipping industry has been slow to improve its environmental credentials, a combination of regulation and technological innovation provides it with significant potential to dramatically reduce its environmental impact.  相似文献   

3.
Currently, the shipping industry is facing a great challenge of reducing emissions. Reducing ship speeds will reduce the emissions in the immediate future with no additional infrastructure. However, a detailed investigation is required to verify the claim that a 10% speed reduction would lead to 19% fuel savings (Faber et al., 2012).This paper investigates fuel savings due to speed reduction using detailed modeling of ship performance. Three container ships, two bulk carriers, and one tanker, representative of the shipping fleet, have been designed. Voyages have been simulated by modeling calm water resistance, wave resistance, propulsion efficiency, and engine limits. Six ships have been simulated in various weather conditions at different speeds. Potential fuel savings have been estimated for a range of speed reductions in realistic weather.It is concluded that the common assumption of cubic speed-power relation can cause a significant error in the estimation of bunker consumption. Simulations in different seasons have revealed that fuel savings due to speed reduction are highly weather dependent. Therefore, a simple way to include the effect of weather in shipping transport models has been proposed.Speed reduction can lead to an increase in the number of ships to fulfill the transport demand. Therefore, the emission reduction potential of speed reduction strategy, after accounting for the additional ships, has been studied. Surprisingly, when the speed is reduced by 30%, fuel savings vary from 2% to 45% depending on ship type, size and weather conditions. Fuel savings further reduce when the auxiliary engines are considered.  相似文献   

4.
The objective of this paper is to explore the possible consequences of the future low-sulphur fuel requirements in Sulphur Emission Control Areas (SECA) on vessel speed, from the standpoint of the container shipping industry. Rational energy use, speed reduction, and revenues are closely related in the container shipping sector because speed reductions may provide substantial energy and cost savings. The operators could consider reducing their speed in SECA in order to save on fuel that will become relatively expensive. However, to maintain a weekly frequency without adding new ships, such a behaviour implies that the required speed at sea outside the SECA area increases. This paper aims to investigate if such a difference in speed is cost-effective, and if the increase in speed outside SECA may result in an increase in CO2 emissions of the total cycle. We propose a cost model that estimates the cost-minimising combination of speeds inside and outside SECA, and the resulting CO2 emissions of the liner service. Applying this model to representative liner services serving North Europe, we find that differentiating speed accordingly slightly decreases total costs and increases CO2 emissions in a similar way. The results are sensitive to the price of low-sulphur fuels, the part of the cycle in SECA and the number of ships deployed in the service.  相似文献   

5.

Coastal and inland feeder shipping is a critical factor for intercontinental container transport. The question is whether each intercontinental terminal should be equipped with its own service stations for feeder shipping, or whether pooling of the facilities would be more effective. For this paper, the service station examined for the service of feeder ships is equipped with two quay cranes operating in parallel supported by a small active quay stack. The centre for this feeder service consists of several of these stations. Simulation shows that a crane productivity of 96% is feasible with an average vehicle waiting time of 1 min, that a central service requires fewer service stations than a distributed service and that the quay transport for central and distributed transport requires the same number of terminal vehicles. The analysis shows that a centralized service is preferable, attracting 70% of the market potential.  相似文献   

6.
The problem of optimal container vessels deployment is one of great significance for the liner shipping industry. Although the pioneering work on this problem dates back to the early 1990s, only until recently have researchers started to acknowledge and account for the significant amount of uncertainty present in shipping demand in real world container shipping. In this paper, new analytical results are presented to further relax the input requirements for this problem. Specifically, only the mean and variance of the maximum shipping demand are required to be known. An optional symmetry assumption is shown to further reduce the feasible region and deployment cost for typical confidence levels. Moreover, unlike previous work that tends to ignore stochastic dependencies between the shipping demands on the various routes (that are known to exist in the real world), our models account for such dependencies in the most general setting to date. A salient feature of our modeling approach is that the exact dependence structure does not need to be specified, something that is hard, if not simply impossible, to determine in practice. A numerical case study is provided to illustrate the proposed models.  相似文献   

7.
The feasibility of implementing short sea shipping (SSS) between two specific ports has been typically approached on the operative level, in terms of time and cost for a specific origin–destination pair. This paper focuses on the strategic level. Particularly, its goal is to study the potential of SSS in different industrial sectors by analysing their freight-distribution strategies. To achieve the objective, some standard freight-distribution strategies are defined based on the requirements of the industry, the demand and the product being transported. The information is complemented with a survey of more than 100 Spanish companies distributing internationally. As a result it is concluded that there are economies of scale related to the size of the carrier (the ship) and its capacity to absorb the variability in demand. This potential increases with the cargo value. Additionally, a framework of supply/distribution chains is provided which can help to identify potential customers/sectors and the feasibility of new potential shipping lines. The value of this paper resides in its approach (strategic, instead of operational/tactical), and the solid groundwork point provided for future researchers.  相似文献   

8.
The potential for improving the fuel economy of conventional, gasoline-powered automobiles through optimized application of recent technology advances is analyzed. Results are presented at three levels of technical certainty, ranging from technologies already in use to technologies facing technical constraints (such as emissions control problems) which might inhibit widespread use. A fleet-aggregate, engineering-economic analysis is used to estimate a range of U.S. new car fleet average fuel economy levels achievable given roughly 10 years of lead time. Technology cost estimates are compared to fuel savings in order to determine likely cost-effective levels of fuel economy, which are found to range from 39 miles per gallon to 51 miles per gallon depending on technology certainty level. The corresponding estimated increases in average new car price range from $540 to $790 (1993$). Estimated fuel savings payback times average less than 3 years and the cost of conserved energy averages $0.50 per gallon, indicating that these levels of fuel economy improvement are cost-effective over a vehicle lifetime. A vehicle stock turnover model is used to project the reductions in gasoline consumption and associated emissions that would follow if the estimated fuel economy levels are achieved. Potential trade-offs regarding vehicle performance, safety, and emissions are also discussed.  相似文献   

9.
In this paper, the maritime fleet renewal problem (MFRP) is extended to include regional limitations in the form of emission control areas. The motivation for including this aspect is that strengthening of emission regulations in such areas is expected to be challenging for deep sea shipping in the years to come. In the proposed model, various means to cope with these stricter emission regulations are evaluated for new vessels, and the possibility of upgrading existing vessels with new emission reduction technology is introduced. We consider future fuel prices to be important for the problem, and have chosen to treat them as uncertain, and thus, a stochastic programming model is chosen. A fleet renewal problem faced by the liner shipping operator Wallenius Wilhelmsen Logistics, concerning whether to use low sulphur fuel or have an exhaust gas scrubber system installed to comply with sulphur regulation in emission control areas from 2015, is used as a case study. Furthermore, tests show that the savings from including the aspect of emission control areas in the MFRP are substantial.  相似文献   

10.
A wide array of technical and operational solutions is available to shipowners in order to comply with existing and upcoming environmental regulation within Emission Control Areas (ECAs). Liquefied Natural Gas (LNG) is a promising alternative since it offers potential cost savings in addition to ensuring compliance with ECA regulation. But investment to retrofit existing vessels to be able to use LNG carries significant upfront costs, and a high degree of uncertainty remains on the differential between the prices of LNG and conventional maritime fuels, as well as on the availability of LNG and the reliability of its supply chain. New technologies such as LNG inherently carry substantial risk and an ill-chosen investment strategy may have irreversible consequences that could jeopardise the future of the shipping company. One important question is whether interested owners should invest in LNG now to comply with ECA rules in 2015 and reap the benefits of lower LNG prices, or whether it would be advisable to wait until some of the uncertainty is resolved.While traditional discounted cash flow techniques are unable to account for the value of managerial flexibility linked, for example, to the possibility of deferring an investment, real option analysis can be used to analyse such cases. The paper discusses the optimal time for investment in LNG retrofit and takes specific account of the value of an investment deferral strategy versus the advantages obtainable from the immediate exploitation of fuel price differentials. Through the use of a real option model the paper shows that there is a trade-off between low fuel prices and capital expenses for investment in LNG retrofit. The development in LNG is critically dependent on its future price as well as the reduction in capital costs and ship retrofitting costs. In this respect, policy makers can play a critical role in providing support to advance technical knowledge, maintain LNG prices at favourable levels and in avoiding ambiguity on regulation.  相似文献   

11.
ABSTRACT

Container shipping gives a rise of international trade since the 1960s. Based on navigation data start from the mid-1990s to 2016, this paper empirically analyses the spatial pattern of China’s international maritime linkages along the “twenty-first-century Maritime Silk Road”. We interpret such evolutionary dynamics in terms of growth, hierarchical diffusion and networking phases. Networking is a new stage of the evolution of the port system, which is approached based on the graph theory, complex network methods and geomatics, the paper discusses the networking’s basic characteristics: multi-hub spatial agglomeration, the connection of the network develops across space, functional differentiation and a division of labour appear among ports. Our results show that, while the scope of China’s maritime linkages had expanded overtime, more foreign ports become connected to the “Maritime Silk Road”. In addition, the external linkages of domestic ports tend to be dispersed, reflecting upon the decline of Pearl River Delta ports and the rise of Yangtze River Delta ports, with mixed evidence for the Bohai Rim region. Lastly, the analysis underlines the emergence of a polycentric shipping system, from the Hong Kong dominance to the more diversified Shanghai/Ningbo/Shenzhen configuration. Academic and managerial implications are included.  相似文献   

12.
13.
This paper proposes a novel method for estimating the perceived value of transit time of containers by shipping lines. The key idea is that a shipping line’s published schedule is the optimal decision that minimizes the sum of fuel cost and time-associated costs of the containers adopted by the shipping line. Using the proposed method, we find that the adopted values of transit time for nine trans-Pacific services operated by Orient Overseas Container Line and five trans-Pacific services operated by Maersk Line are between US$5/TEU/day and US$30/TEU/day. We further demonstrate how the adopted value can be used for designing the optimal transit times between ports, analyzing the viability of slow-steaming, checking whether ships should speed up to catch up to connecting ships on other services, and helping to predict the market share of less polluting fuels in view of rules on air emission.  相似文献   

14.

A model is developed to describe and to predict the patterns of regional recreational travel. The model is designed in such a manner to allow its calibration and use without the need to conduct extensive travel surveys in a large region. To allow its use for prediction, the model is based on a causal structure and attempts to derive recreational travel demand from behavioural variables. The main hypothesis of the model is that the amount of recreational travel a recreation area attracts is affected by the accessibility of this area to points of demand potential and by its attractiveness relative to the recreation areas.

The calibration is founded on actual data on recreational travel to national forests in California, U.S.A. It is found in the calibration that accessibility to demand potential is the single most important determinant of recreational travel attraction. A simple relationship is derived to relate travel to each national forest to the relative accessibility of the forest. The model is calibrated and statistically validated.

It is suggested that when constructing travel demand models simplicity be sought, even at the risk of the loss of some explanatory power. In the calibration of such models statistical significant is more important than the ability to reproduce observed patterns.  相似文献   

15.
The introduction of connected and autonomous vehicles will bring changes to the highway driving environment. Connected vehicle technology provides real-time information about the surrounding traffic condition and the traffic management center’s decisions. Such information is expected to improve drivers’ efficiency, response, and comfort while enhancing safety and mobility. Connected vehicle technology can also further increase efficiency and reliability of autonomous vehicles, though these vehicles could be operated solely with their on-board sensors, without communication. While several studies have examined the possible effects of connected and autonomous vehicles on the driving environment, most of the modeling approaches in the literature do not distinguish between connectivity and automation, leaving many questions unanswered regarding the implications of different contemplated deployment scenarios. There is need for a comprehensive acceleration framework that distinguishes between these two technologies while modeling the new connected environment. This study presents a framework that utilizes different models with technology-appropriate assumptions to simulate different vehicle types with distinct communication capabilities. The stability analysis of the resulting traffic stream behavior using this framework is presented for different market penetration rates of connected and autonomous vehicles. The analysis reveals that connected and autonomous vehicles can improve string stability. Moreover, automation is found to be more effective in preventing shockwave formation and propagation under the model’s assumptions. In addition to stability, the effects of these technologies on throughput are explored, suggesting substantial potential throughput increases under certain penetration scenarios.  相似文献   

16.
According to a range of assessments, there exists a large cost-effective potential to increase energy efficiency in shipping through reduced speed at sea enabled by shorter time in port. This means that the energy needed can be reduced whilst maintaining the same transport service. However, the fact that a large cost-effective potential has been identified that is not being harnessed by decision-makers in practice suggests that there is more to this potential to understand. In this paper, the possibilities for increasing energy efficiency by reducing waiting time in port are explored and problematised through a case study of a short sea bulk shipping company transporting dry bulk goods mainly in the North and Baltic seas. Operational data from two ships in the company’s fleet for one year showed that the ships spent more than 40% of their time in ports and that half of the time in port was not productive. The two most important reasons for the large share of unproductive time were that ports were closed on nights and weekends and that ships arrived too early before the stevedores were ready to load or unload the cargo. Reducing all of the unproductive time may be difficult, but the results also show that even a conservative estimate of one to four hours of reduced time per port call would lead to a reduction in energy use of 2–8%. From in-depth interviews with employees of the shipping company, ports and ship agencies, a complex picture is painted when attempting to understand how this potential arises. Aspects such as a lack of effective ship-shore-port communication, little time for ship operators, an absence of means for accurately predicting energy use of voyages as a function of speed, perceived risk of arriving too late, and relationships with third-party technical management may all play a role.  相似文献   

17.
Container liner shipping companies only partially alter their shipping networks to cope with the changing demand, rather than entirely redesign and change the network. In view of the practice, this paper proposes an optimal container liner shipping network alteration problem based on an interesting idea of segment, which is a sequence of legs from a head port to a tail port that are visited by the same type of ship more than once in the existing shipping network. In segment-based network alteration, the segments are intact and each port is visited by the same type of ship and from the same previous ports. As a result, the designed network needs minimum modification before implementation. A mixed-integer linear programming model with a polynomial number of variables is developed for the proposed segmented-based liner shipping network alternation problem. The developed model is applied to an Asia–Europe–Oceania liner shipping network with a total of 46 ports and 11 ship routes. Results demonstrate that the problem could be solved efficiently and the optimized network reduces the total cost of the initial network considerably.  相似文献   

18.
Abstract

As the Liquefied Natural Gas (LNG) market is supply-driven and subject to long-term contracts, both liquefaction companies and shipowners need to make strategic decisions on fleet chartering requirements. These planning decisions become ever more difficult in light of the transformations permeating the LNG market, propelling into a more competitive market with more flexible trades and expanding spot markets. The overcapacity of LNG ships during 2008–2009 triggered by massive overcontracting is a good case in point where the use of decision support models would have been beneficial, especially considering the fortunes and risks at stake. In this paper we present an LNG shipping model that effectively supports decision-making in practice. To demonstrate the value added of the model, we study the implications of LNG project delays and increased decommissioning of ships with respect to market balance and fleet requirements.  相似文献   

19.
Abstract

A number of studies have been carried out on the factors determining port choice, derived from the perspectives of shippers, carriers or both. Recently, some studies using multi-criteria analysis, more specifically Saaty's analytical hierarchy process (AHP), have been undertaken to address port competitiveness and port selection by shipping lines. Based on a review of the literature on port selection, this article proposes a decision support system (DSS) for port selection using AHP methodology. The proposed DSS is web-based and thus it can be accessed by more decision makers and data collection can be carried out faster. Moreover, AHP addresses the issue of how to structure a complex decision problem, identify its criteria, measure the interaction among them and finally synthesise all the information to arrive at priorities, which depict preferences. AHP is able to assist port managers in obtaining a detailed understanding of the criteria and address the port selection problem utilising multi-criteria analysis. This article presents the architecture and the port selection procedure of the web-based DSS, and then illustrates three different cases. It shows how technology advancement can bring positive effects of strategic planning to shipping firms.  相似文献   

20.
The quest for more fuel-efficient vehicles is being driven by the increasing price of oil. Hybrid electric powertrains have established a presence in the marketplace primarily based on the promise of fuel savings through the use of an electric motor in place of the internal combustion engine during different stages of driving. However, these fuel savings associated with hybrid vehicle operation come at the tradeoff of a significantly increased initial vehicle cost due to the increased complexity of the powertrain. On the other hand, telematics-enabled vehicles may use a relatively cheap sensor network to develop information about the traffic environment in which they are operating, and subsequently adjust their drive cycle to improve fuel economy based on this information – thereby representing ‘intelligent’ use of existing powertrain technology to reduce fuel consumption. In this paper, hybrid and intelligent technologies using different amounts of traffic flow information are compared in terms of fuel economy over common urban drive cycles. In order to develop a fair comparison between the technologies, an optimal (for urban driving) hybrid vehicle that matches the performance characteristics of the baseline intelligent vehicle is used. The fuel economy of the optimal hybrid is found to have an average of 20% improvement relative to the baseline vehicle across three different urban drive cycles. Feedforward information about traffic flow supplied by telematics capability is then used to develop alternative driving cycles firstly under the assumption there are no constraints on the intelligent vehicle’s path, and then taking into account in the presence of ‘un-intelligent’ vehicles on the road. It is observed that with telematic capability, the fuel economy improvements equal that achievable with a hybrid configuration with as little as 7 s traffic look-ahead capability, and can be as great as 33% improvement relative to the un-intelligent baseline drivetrain. As a final investigation, the two technologies are combined and the potential for using feedforward information from a sensor network with a hybrid drivetrain is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号