首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
戴海燕  王玉兴 《汽车工程》2020,42(5):665-671,687
为研究电池组的排列与布置方式对电池热特性的影响,本文中以18650锂离子电池为研究对象,建立了单体电池的电化学热力学耦合模型。利用模型仿真和实验测量获得了不同放电倍率时的电池表面温度随放电容量的变化关系,实验数据与仿真数据基本吻合,模型准确。基于单体耦合模型,分析了6×5动力电池模组的不同排列与布置方式下的热特性。结果表明:间距太小或太大均会使平均温度增加,本案例电池间距24 mm时平均温度最低;间距越大,温差越小,温度分布均匀性越好;间距一定,交叉排列散热效果优于对齐排列,且空间利用率更高。电池的排列和间距对电池散热有重要影响,锂离子动力电池组设计过程中应充分考虑。  相似文献   

2.
锂离子动力电池温升特性的研究   总被引:2,自引:1,他引:1  
介绍了锂离子动力电池的发热机理.基于锂离子动力电池内阻引起的温升特性,建立动力电池传热模型,通过模拟计算得出电池内部温度分布及电池温升随放电倍率变化的规律.最后对锰酸锂电池进行内阻实验,揭示了电池内阻随电池温度和SOC变化的规律.  相似文献   

3.
车用锂离子动力电池在充放电过程中由于电极材料中锂离子的脱出和嵌入而产生的"呼吸效应"受电池材料、环境温度和充放电倍率等的影响较大,且与电池的健康状态有密切关系。本文中为一款车用锂离子电池设计并制造了电池厚度的测试装置,用来研究电池在不同倍率、不同温度下的"呼吸效应"。结果表明,倍率越大,温度越低,则电池的"呼吸效应"越弱。  相似文献   

4.
电动汽车锂离子电池的生热特性   总被引:1,自引:0,他引:1  
对锂离子电池生热特性的研究是电动汽车动力电池热管理设计的基础。文章以电动汽车用11A·h电池单体为例,进行有限元建模分析,比较了它在不同环境温度下的生热特性。经过试验验证,测试结果与仿真分析相符合,该电池在环境温度为-20~40℃时以1C放电终止,温升为20℃左右。指出由于该电池推荐工作温度为30~55℃,因此使用时电池外部应配有加热系统;当电池放电倍率始终小于1C时,可不配置强制冷却系统。  相似文献   

5.
本文中以电动车用额定容量为30 A·h的三元软包LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2(NCM622)锂离子动力电池单体为研究对象,研究其在不同充电倍率条件下的行为特性。结果表明,锂离子电池过充过程可分为4个阶段;电池表面最高温度位置不是固定不变的;在大部分测试时间内,最大温差(MTD)都小于1℃;充电倍率对锂离子电池过充行为特性影响较大,随着充电倍率的增加,热失控最高温度和峰值电压升高,而过充测试时间和测试结束时的荷电状态(SOC)随着充电倍率的升高而降低。本研究为富镍锂离子动力电池的安全性设计和电池管理系统(BMS)对过充故障的安全管理提供了参考。  相似文献   

6.
为探究车用大尺寸锂离子动力电池内部性能不一致性,基于伪二维理论,建立了二维仿真模型.引入集流体区域电势分布及边界条件,对10~150 cm不同长度电极的电池建模仿真,分析了倍率性能、容量发挥率、阻抗等电性能及局部析锂.结果显示:长度为100 cm的电池在3 C大倍率充电时正极集流体压降高达0.1 V,充电容量发挥率仅为...  相似文献   

7.
针对放电过程中,锂离子电池生热和散热问题,利用有限元分析软件ANSYS/Fluent,模拟分析锂离子电池在不同对流换热系数和不同放电倍率条件下的三维温度场分布情况。结果表明,锂离子电池温度场分布情况与对流换热系数和放电倍率存在一定关系。  相似文献   

8.
锂动力电池内阻是衡量电动汽车用电池性能的一个重要参数。本文中研究了不同环境温度、放电倍率和放电深度下的电池内阻随循环次数而变化的规律。结果表明,电池内阻与循环次数之间呈幂指数关系。电池内阻变化率与环境温度之间近似于二次函数关系,当环境温度为20℃时,电池内阻及其随循环次数的变化率均最小;电池内阻变化率随放电倍率的增大而增大,当放电倍率为1C时,电池内阻变化率基本上不随循环次数而变化,而当放电倍率为1.5C和2C时,电池内阻变化率随循环次数增加而明显增大;放电深度为25%和50%时,电池内阻变化率随循环次数的变化曲线相近,当放电深度达到100%时,电池内阻变化率显著增大。单次循环放电中,放电深度为0~80%时,电池内阻随放电深度的变化较小,当放电深度为80%~100%时,电池内阻随放电深度的增加而急剧增加。  相似文献   

9.
为减少工业常用荷电状态(SOC)估计方法——安时法的累积误差,提出一种实时校正的锂离子电池SOC估计方法。在0~60℃,放电倍率1 C、2 C、3 C和0.33 C下,进行锂离子电池放电实验,测量了电压、电流、温度,建立了锂离子电池放电数据库。从该库获取上述放电温度、放电倍率范围,SOC值为20%、80%时的开路电压,以此两点引入一条关于电压与SOC的直线。以该直线上某点电压所对应SOC作为修正项,并引入修正因子α,来校正安时法所得剩余电量SOC估计值。与实验值对比,该SOC估计结果的误差小于4%,符合工业需求。  相似文献   

10.
动力电池导热系数因其结构复杂性影响具有各向异性。使用热流计法测量了动力电池厚度方向上不同区域的导热系数,并测量了绝热条件下锰酸锂电池(12 Ah)和磷酸铁锂电池(20 Ah)的发热情况,用Bernardi方程计算出电池发热量方程。利用测量出的导热系数及发热量数据对两种电池建立了模型,计算对比了相同环境条件下两种电池在相同放电电流和相同放电倍率情况下的发热情况。结果表明,电池中部与两侧导热系数相差40.5%,相同放电电流和时间条件下小容量电池温升更大,在10 A放电800 s时温差为2.52℃,而相同放电倍率情况下大容量电池温升在2C放电800 s时比小容量电池高13.17℃。  相似文献   

11.
以纳米Li Fe PO4锂离子电池为研究对象,在50~450 A和-18~50℃范围内,对其充放电特性、Peukert模型与温度的关系进行了讨论,利用Ragone曲线对阀控式密封铅酸动力电池、镍氢动力电池及锰酸锂离子电池的能量功率特性进行了对比分析。研究表明,该纳米Li Fe PO4锂离子电池的快速放电能力和能量功率特性都得到很大改善,尤其适合于高温工况;低温性能依然还是纳米Li Fe PO4锂离子电池的弱点,亟待进一步提高。  相似文献   

12.
针对车用锂离子动力电池的散热问题,对电池组的结构进行优化设计。建立锂离子动力电池三维模型,利用Fluent进行数值仿真。通过对仿真结果的对比分析得出:电池间距的增大和减小分别使电池组的散热性能提高和降低,且其间距减小时,电池间温度差异明显;发现动力电池组入口风速升高,电池表面空气流速相对提高,电池组换热能力增强,但电池间流场的一致性变差、温差变大。  相似文献   

13.
纯电动汽车通过动力电池中的化学能驱动电机工作,动力电池是纯电动汽车的能量源头,现有动力电池一般为锂离子电池,其化学活性与温度关联度较大,温度越低电池输出功率越小.在温度极低的情况下,当驾驶员大油门起步或急加速时,扭矩需求较大,电池输出功率增大,如果电池活性不足,会导致电池欠压故障.整车控制器根据温度从控制策略角度进行预判,限制扭矩,保证整车正常工作,保护电池安全.  相似文献   

14.
本文中对利用校准量热法测量18650圆柱电池的比热和生热率进行了研究,它根据电池的温度变化和热损标定,确定锂离子电池的比热容,并测定大倍率放电时的生热率。实验结果表明:电池的比热容随环境温度的升高而增大,两者呈线性正相关。电池在放电过程中的生热具有时变瞬态的特点,电池平均生热率与放电倍率的平方正相关。此外,通过恒定功率生热实验证明了采用校准量热法测量电池比热容和生热率的准确性,方法简单,且实验过程不损坏电池。  相似文献   

15.
为提高锂离子动力电池的工作温度区间,保障电池的动力输出,需要在电池系统端进行有效的热管理设计。文章主要通过CFD热仿真技术分析了在不同实验工况下电池单体内部生成热、模组在加热及散热时的温度场分布,并通过对比分析不同散热结构的仿真结果,来优化电池内部散热结构的设计。整车的冷却实验验证结果也表明该设计可以有效地保障电池工作合理的温度范围内。  相似文献   

16.
本文中旨在对车用锂离子电池电化学模型进行参数辨识。首先在锂离子电池平均电极模型基础上,利用均匀离散的有限差分法简化电化学模型。基于对模型特性和参数类型的分析,运用遗传算法先后对固相锂离子扩散动力学参数和模型中剩余的参数进行辨识。最终通过多倍率放电实验和NEDC循环工况实验验证了算法的有效性和参数的准确性。结果表明,算法辨识的参数可保证模型输出精度,低倍率放电时单体电压偏差在±0.03V左右。  相似文献   

17.
通过实验研究了锂离子电池1C倍率放电,20℃自然对流情况下的温升特性。测得了20℃环境温度下电池的充放电内阻特性,并根据某品牌18650型锂离子电池的物性参数以及实验测得的内阻数据建立了电池单体仿真模型,仿真计算了与实验同工况下的温度分布情况,最大误差4.9%。设计了一种包含480节电池的并行通风空气冷却散热结构,并通过正交试验进行了优化,得到了进出风孔距电池的最小距离1mm,上挡板距离电池的最小距离1mm,下挡板距离电池的最小距离1mm的最优结构,使电池组的最大温升下降了5.71℃,最大温差降低了5.06℃。并基于最优结构给出了120s后每60s改变送风方向的往复送风策略,使电池组即使在40℃、2C放电的恶劣工况下也能够工作在25℃-40℃,电池单体温差5℃以下的工作环境中。  相似文献   

18.
锰酸锂动力电池寿命测试方法   总被引:1,自引:0,他引:1  
以北京奥运会用锰酸锂电池为对象,通过电池的实际运行环境和电池容量衰退多种影响因素的分析,从充放电倍率应力、温度应力和放电深度应力3方面进行与实际运行环境等效的应力条件下的电池寿命测试。利用拟合的衰退数据得到了锂离子动力电池的寿命模型参数,利用线性累积法简化了电池容量衰退模型,提出了一种面向不同实际应用场合的电池寿命测试方法。与模拟混合四季温度的电池寿命数据对比验证了该简化模型的有效性,它有效缩短了电池寿命测试周期。  相似文献   

19.
锂离子电池寿命通常与电极材料、充放电倍率、放电深度、放电区间和使用环境温度等因素有关。本文中针对一款车用的锂离子电池,研究放电区间对其容量衰减的影响,并通过试验测得的电量增量曲线分析电池的衰减机理,明确电池锂离子和电极活性材料的损失均是导致不同放电区间下容量衰减的因素。最后,利用放电曲线重构的方法,定量分析了容量衰减与可用锂离子和正负极活性材料损失量的关系。  相似文献   

20.
针对锂动力电池在放电过程中的散热问题,建立基于某三元锂电池模组的生热模型,仿真分析并试验探究了电池模组在不同放电倍率下的发热情况。在验证模组生热模型正确的前提下,结合模组发热具体情况,设计U型液冷管道并建立电池模组的液冷模型,比较了不同参数的冷却液介质和不同温度的冷却液对锂电池组冷却性能的影响。研究表明:设计的U型管道能够满足电池组冷却散热需求,导热系数大且温度较低的冷却介质散热效果更好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号