首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper considers the application of linear optimal control to the design of an active automobile suspension system. By inclusion of an integral constraint in the performance index it is possible to achieve zero steady state axle to body response to both static body forces and ramp road inputs. Full state feedback is achieved by reconstructing the state variables from easily measured quantities.  相似文献   

2.
An optimal control design method is introduced and then applied to the optimum design of active and passive suspension systems. A basic three-dimensional 7-DOF car riding model subjected to four correlated random road inputs is considered. The design method is basically developed to allow arbitrary choice of sensors for various car state variables to be used for feedback control of each suspension unit. Previous studies show that full-state control laws and even some limited-state control laws often include feedback gains which are almost zero. Some other gains, although not zero, don't play an important role in improving the system performance measures. With the method proposed in this work, every suspension unit can have its own feedback measurements and the criterion function can be related to all state and control variables. Thus a large number of active and semi-active suspension systems with full- or limited-state control laws based on different measurement combination can be suggested, studied, and compared with each other. Instead of comparing these optimized active and semi-active suspension systems with a basic, passive suspension, the passive system itself is optimized with the same criterion. Simulations in the time domain and frequency analyses are performed, and comparisons are made among the systems in terms of r.m.s. car response measures and ISO riding comfort criterion.  相似文献   

3.
By the incorporation of frequency-shaping into the linear quadratic methods used in active suspension design it is possible to achieve improvements in both body frequency response and road-holding. The use of a PID filter for this purpose also leads to robustness of the system to disturbance forces. Zero steady-state deflections are achieved for applied body loads by the integral action with excellent attenuation of the transient response. The resulting system consists of a hydraulic actuator in parallel with a body spring of arbitrary stiffness and is optimal with equivalent full state feedback.  相似文献   

4.
Theoretical Limitations in Active Vehicle Suspensions   总被引:1,自引:0,他引:1  
Vehicle suspensions in which forces are generated in response to feedback signals by active elements obviously offer increased design flexibility compared to conventional suspensions using passive elements such as springs and dampers. It is often assumed that if practical difficulties are neglected, active systems could in principle produce arbitrary ideal, behavior. It is shown, using a simple linear two degree-of-freedom suspension system, model that even using complete state feed back and in the case of in which the system is controllable in the control theory sense, there still are limitations to suspension performance in the fully active case. If the ideal suspension performance is defined based on low-pass filtering of roadway unevenness inputs, an active suspension may not offer much better performance than a partially active or adaptive passive suspension depending upon the values of certain vehicle parameters.  相似文献   

5.
This paper proposes a nonlinear adaptive sliding mode control that aims to improve vehicle handling through a Steer-By-Wire system. The designed sliding mode control, which is insensitive to system uncertainties, offers an adaptive sliding gain to eliminate the precise determination of the bound of uncertainties. The sliding gain value is calculated using a simple adaptation algorithm that does not require extensive computational load. Achieving the improved handling characteristics requires both accurate state estimation and well-controlled steering inputs from the Steer-By-Wire system. A second order sliding mode observer provides accurate estimation of lateral and longitudinal velocities while the driver steering angle and yaw rate are available from the automotive sensors. A complete stability analysis based on Lyapunov theory has been presented to guarantee closed loop stability. The simulation results confirmed that the proposed adaptive robust controller not only improves vehicle handling performance but also reduces the chattering problem in the presence of uncertainties in tire cornering stiffness.  相似文献   

6.
SUMMARY

Vehicle suspensions in which forces are generated in response to feedback signals by active elements obviously offer increased design flexibility compared to conventional suspensions using passive elements such as springs and dampers. It is often assumed that if practical difficulties are neglected, active systems could in principle produce arbitrary ideal, behavior. It is shown, using a simple linear two degree-of-freedom suspension system, model that even using complete state feed back and in the case of in which the system is controllable in the control theory sense, there still are limitations to suspension performance in the fully active case. If the ideal suspension performance is defined based on low-pass filtering of roadway unevenness inputs, an active suspension may not offer much better performance than a partially active or adaptive passive suspension depending upon the values of certain vehicle parameters.  相似文献   

7.
为保证无人车在参数不确定性影响下的路径跟踪具有预设控制精度,提出一种具有预设跟踪误差性能的路径跟踪输出反馈控制方法。根据横向预瞄偏差建立了路径跟踪二阶误差积分系统,在考虑轮胎侧偏刚度参数摄动及车辆横向速度未知的情况下,利用扩张状态方法建立了含有复合未知项的控制模型,再通过设计线性扩张状态观测器对系统未知状态和模型不确定项进行估计,并进一步证明了观测误差的一致有界收敛性。针对无人车路径跟踪瞬态和稳态性能无法满足预设精度的问题,结合观测器估计值提出了一种具有预设性能的路径跟踪输出反馈控制器,并根据Lyapunov理论对闭环系统稳定性进行了严格证明。Matlab/Simulink仿真结果表明,所设计的控制策略能保证车辆以预设控制性能跟踪上期望路径,进一步在硬件在环仿真试验台上进行验证,结果表明所设计方案能严格保证横向跟踪偏差位于安全边界之内并具有较强的鲁棒性。  相似文献   

8.
针对多车协同控制系统中,传统控制算法需要准确获取系统中与驾驶员驾驶行为相关的参数以及与车辆系统动力学相关参数等问题,提出基于数据驱动的自适应动态规划控制算法。以有人与无人驾驶车辆混行的多车协同控制系统为研究对象,通过分析系统的横纵向控制模型,推导出系统状态方程,采用递推数值方法在线逼近最优解,并通过对最优反馈控制矩阵进行优化求解,得到最优控制输入。该算法简化了系统的控制输入参数,仅仅利用V2X通信获得的车辆的前轮转角以及车辆期望的纵向加速度作为控制输入,即可实现无人驾驶车辆的优化控制。基于Carsim和Simulink进行联合仿真测试验证,结果表明,该算法控制参数简单、收敛速度快、控制精度高、适应性强,能够控制无人驾驶车辆在多车系统中保持期望的车速并且与前车保持期望的车间距,同时在任意曲率道路上行驶时与车道中心线之间的横向误差趋于0。   相似文献   

9.
Based on a mathematical model of an actively suspended vehicle, the effects of the following issues in deriving the control laws are studied:

(a)representation of the ground surface as integrated or filtered white noise.

(b)cross-correlation between left and right track inputs.

(c)wheelbase time delay between front and rear inputs.

The third of these issues is shown to be by far the most important. Considerable improvements at the rear suspension can be obtained if the control law includes the information that the rear input is simply a delayed version of the front input. Effectively this provides feedforward terms in the control law for the rear actuator. For the full state feedback case, these improvements are indicated by reductions in the rear body acceleration and rear dynamic tyre load of around 20% and 40% respectively with no increase in suspension working space.  相似文献   

10.
Dynamic response calculations for vehicles traversing irregular surfaces are usually accomplished using frequency domain methods involving spectral densities and transfer functions. Here an alternative procedure is developed which allows direct computation of mean square values and correlations of system variables for both transient and steady-state conditions. The method is based upon the differential equation for the covariance matrix which is directly related to the state equations for the vehicle. Multiple white noise inputs can be incorporated as well as inputs at two wheels which follow the same track at a distance from one another..The method is suitable for computer implementation without the complex algebra associated with finding all necessary transfer functions and the necessity of evaluating integrals in order to find mean square values using the conventional approach. As an illustration, a simple vehicle model is worked out completely and the variation of pitch and heave motion as a function of vehicle speed is plotted.  相似文献   

11.
为了解决某车辆被动悬架系统中减振器由于温升过高而漏油失效的问题,提出了车辆悬架系统机械特性与其热学特性相互耦舍的模型。采用MATLAB/Simulink建立闭环正反馈系统的热一机耦合模型,并通过仿真计算得到某车辆在多种工况以及不同悬架参数条件下减振器的温升特性曲线。研究结果表明:随着路面等级的下降、车速的提高、簧上质量的增大以及悬架刚度的减小,减振器的温度升高;车轮刚度对减振器温升特性影响较小;簧下质量对减振器温升特性无影响。  相似文献   

12.
王猛  徐新喜  王旭 《汽车工程》2007,29(7):611-615
针对车辆悬架系统的功能及物理特性,以车轴的运动为系统输入,对复杂的整车行驶模型进行了合理简化。以某型专用越野车辆为例,建立了簧载质量的3自由度振动模型,推导了簧载质量任意位置处的加速度频响函数;利用汽车试验场道路测试数据,通过遗传算法编写VC程序进行了数据拟合,得到了悬架系统在不同路面工况下的等效物理参数。实际应用表明,拟合结果具有较高的可信度。  相似文献   

13.
In this study, preview control algorithms for the active and semi-active suspension systems of a full tracked vehicle (FTV) are designed based on a 3-D.O.F model and evaluated. The main issue of this study is to make the ride comfort characteristics of a fast moving tracked vehicle better to keep an operator’s driving capability. Since road wheels almost trace the profiles of the road surface as long as the track doesn’t depart from the ground, the preview information can be obtained by measuring only the absolute position or velocity of the first road wheel. Simulation results show that the performance of the sky-hook suspension system almost follows that of full state feedback suspension system and the on-off semi-active system carries out remarkable performance with the combination of 12 on-off semi-active suspension units. The results simulated with 1st and 2nd weighting sets mean that the suspension system combined with the soft type of inner suspension and hard type of outer suspension can carry out better ride comfort characteristics than that with identical suspensions. The full tracked vehicle (FTV) system is uncontrollable and the system is split into controllable and uncontrollable subspace using singular value decomposition transformation. Frequency response curves to four types of inputs, such as heaving, pitching, rolling, and warping inputs, also demonstrate the merits of preview control in ride comfort. All the frequency characteristic responses confirm the continuous time results.  相似文献   

14.
An existing driver–vehicle model with neuromuscular dynamics is improved in the areas of cognitive delay, intrinsic muscle dynamics and alpha–gamma co-activation. The model is used to investigate the influence of steering torque feedback and neuromuscular dynamics on the vehicle response to lateral force disturbances. When steering torque feedback is present, it is found that the longitudinal position of the lateral disturbance has a significant influence on whether the driver’s reflex response reinforces or attenuates the effect of the disturbance. The response to angle and torque overlay inputs to the steering system is also investigated. The presence of the steering torque feedback reduced the disturbing effect of torque overlay and angle overlay inputs. Reflex action reduced the disturbing effect of a torque overlay input, but increased the disturbing effect of an angle overlay input. Experiments on a driving simulator showed that measured handwheel angle response to an angle overlay input was consistent with the response predicted by the model with reflex action. However, there was significant intra- and inter-subject variability. The results highlight the significance of a driver’s neuromuscular dynamics in determining the vehicle response to disturbances.  相似文献   

15.
Passenger discomfort, suspension working space and dynamic tyre loading parameters are calculated for different combinations of spring stiffness and damping coefficient representing the suspension system in a quarter car model subject to realistic random disturbance inputs from roads of widely differing quality. Sprung and unsprung masses and the tyre vertical stiffness and damping coefficient employed derive from a current production car. Designs which are best for the specific conditions represented are identified and their performance properties in other (off-design) conditions are considered, and conventional design is explained as the inevitable consequence of the need to compromise if fixed suspension parameters are used. Performance improvements possible if variable parameters can be employed are evaluated as a function of the ranges of variability provided, and a stratagem for controlling parameters is proposed.  相似文献   

16.
The main focus of this paper is to compensate the steady state offset error of the 6D IMU which provides the measurements that include the vehicle linear accelerations and angular rates of all three axes. Additionally, the sensor compensation algorithm exploits the wheel speed data and the steering angle information, since they are already available in most of the modern mass production vehicles. These inputs are combined with the inverse vehicle kinematics to estimate the steady state offset error of each sensor inputs as it is done in a disturbance observer, and the raw sensor measurements are compensated by the estimated offset errors. The stability of the error dynamics regarding the integrated signal processing system is verified, and finally, the performance of the system is tested via experiments based on a real production SUV.  相似文献   

17.
SUMMARY

Dynamic response calculations for vehicles traversing irregular surfaces are usually accomplished using frequency domain methods involving spectral densities and transfer functions. Here an alternative procedure is developed which allows direct computation of mean square values and correlations of system variables for both transient and steady-state conditions. The method is based upon the differential equation for the covariance matrix which is directly related to the state equations for the vehicle. Multiple white noise inputs can be incorporated as well as inputs at two wheels which follow the same track at a distance from one another..The method is suitable for computer implementation without the complex algebra associated with finding all necessary transfer functions and the necessity of evaluating integrals in order to find mean square values using the conventional approach. As an illustration, a simple vehicle model is worked out completely and the variation of pitch and heave motion as a function of vehicle speed is plotted.  相似文献   

18.
In this paper a novel active compliance chamber is designed, which can be used to control the dynamic stiffness of a common hydraulic bushing. This chamber offers a simple and cost-effective solution for the variable displacement engine (VDE) isolation problem. A VDE system requires a soft bushing for the half cylinder mode and a regular one for normal engine operations. A magnetic actuator is used to produce mechanical pulses. The linearisation technique is used for simplifying the nonlinear equation of motion. Different current sources are used to feed the magnetic actuator. The pressure inside the chamber follows linearly the current input signal. The phase shift in various current inputs is used in the form of the transfer functions to create the required pressure response pattern in the frequency domain. Since the dynamic stiffness of a conventional hydraulic bushing is a direct function of the pressure inside it, the active compliance chamber can be used to alter the pressure and consequently produce the required dynamic stiffness response. As a result, it can address the engine vibration problem for VDE situation.  相似文献   

19.
SUMMARY

Passenger discomfort, suspension working space and dynamic tyre loading parameters are calculated for different combinations of spring stiffness and damping coefficient representing the suspension system in a quarter car model subject to realistic random disturbance inputs from roads of widely differing quality. Sprung and unsprung masses and the tyre vertical stiffness and damping coefficient employed derive from a current production car. Designs which are best for the specific conditions represented are identified and their performance properties in other (off-design) conditions are considered, and conventional design is explained as the inevitable consequence of the need to compromise if fixed suspension parameters are used. Performance improvements possible if variable parameters can be employed are evaluated as a function of the ranges of variability provided, and a stratagem for controlling parameters is proposed.  相似文献   

20.
Most vehicle suspension systems use fixed passive components that offer a compromise in performance between sprung mass isolation, suspension travel, and tireroad contact force. Recently, systems with discretely adjustable dampers and air springs been added to production vehicles. Active and semi-active damping concepts for vehicle suspensions have also been studied theoretically and with physical prototypes. This paper examines the optimal performance comparisons of variable component suspensions, including active damping and full-state feedback, for “quartercar” heave models. Two and three dimensional optimizations are computed using performance indicators to find the component parameters (control gains) that provide “optimal” performance for statistically described roadway inputs. The effects of performance weighting and feedback configuration are examined. Active damping is shown to be mainly important for vehicle isolation. A passive vehicle suspension can control suspension travel and tire contact force nearly as well as a full state feedback control strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号