首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper considers a static congestion pricing model in which travelers select a mode from either, driving on highway or taking public transit, to minimize a combination of travel time, operating cost and toll. The focus is to examine how travelers’ value of time (VOT), which is continuously distributed in a population, affects the existence of a pricing-refunding scheme that is both self-financing (i.e. requiring no external subsidy) and Pareto-improving (i.e. reducing system travel time while making nobody worse off). A condition that insures the existence of a self-financing and Pareto-improving (SFPI) toll scheme is derived. Our derivation reveals that the toll authority can select a proper SFPI scheme to distribute the benefits from congestion pricing through a credit-based pricing scheme. Under mild assumptions, we prove that an SFPI toll always exists for concave VOT functions, of which the linear function corresponding to the uniform distribution is a special case. Existence conditions are also established for a class of rational functions. These results can be used to analyze more realistic VOT distributions such as log-normal distribution. A useful implication of our analysis is that the existence of an SFPI scheme is not guaranteed for general functional forms. Thus, external subsidies may be required to ensure Pareto-improving, even if policy-makers are willing to return all toll revenues to road users.  相似文献   

2.
Empirical studies showed that travel time reliability, usually measured by travel time variance, is strongly correlated with travel time itself. Travel time is highly volatile when the demand approaches or exceeds the capacity. Travel time variability is associated with the level of congestion, and could represent additional costs for travelers who prefer punctual arrivals. Although many studies propose to use road pricing as a tool to capture the value of travel time (VOT) savings and to induce better road usage patterns, the role of the value of reliability (VOR) in designing road pricing schemes has rarely been studied. By using road pricing as a tool to spread out the peak demand, traffic management agencies could improve the utility of travelers who prefer punctual arrivals under traffic congestion and stochastic network conditions. Therefore, we could capture the value of travel time reliability using road pricing, which is rarely discussed in the literature. To quantify the value of travel time reliability (or reliability improvement), we need to integrate trip scheduling, endogenous traffic congestion, travel time uncertainty, and pricing strategies in one modeling framework. This paper developed such a model to capture the impact of pricing on various costs components that affect travel choices, and the role of travel time reliability in shaping departure patterns, queuing process, and the choice of optimal pricing. The model also shows the benefits of improving travel time reliability in various ways. Findings from this paper could help to expand the scope of road pricing, and to develop more comprehensive travel demand management schemes.  相似文献   

3.
Private provision of public roads signifies co-existence of free, public-tolled and private-tolled roads. This paper investigates the Pareto-improving transportation network design problem under various ownership regimes by allowing joint choice of road pricing and capacity enhancement on free links. The problem of interest is formulated as a bi-objective mathematical programming model that considers the travel cost of road users in each origin-destination pair and the investment return of the whole network. The non-dominated Pareto-improving solutions of toll and/or capacity enhancement schemes are sought for achieving a win-win situation. A sufficient condition is provided for the existence of the non-dominated Pareto-improving schemes and then the properties of those schemes are analyzed. It is found that, under some mild assumptions, the optimal capacity enhancement is uniquely determined by the link flow under any non-dominated Pareto-improving scheme. As a result, the joint road pricing and capacity enhancement problem reduces to a bi-objective second-best road pricing problem. A revenue distribution mechanism with return rate guarantee is proposed to implement the non-dominated Pareto-improving schemes.  相似文献   

4.
Pricing is considered an effective management policy to reduce traffic congestion in transportation networks. In this paper we combine a macroscopic model of traffic congestion in urban networks with an agent-based simulator to study congestion pricing schemes. The macroscopic model, which has been tested with real data in previous studies, represents an accurate and robust approach to model the dynamics of congestion. The agent-based simulator can reproduce the complexity of travel behavior in terms of travelers’ choices and heterogeneity. This integrated approach is superior to traditional pricing schemes. On one hand, traffic simulators (including car-following, lane-changing and route choice models) consider travel behavior, i.e. departure time choice, inelastic to the level of congestion. On the other hand, most congestion pricing models utilize supply models insensitive to demand fluctuations and non-stationary conditions. This is not consistent with the physics of traffic and the dynamics of congestion. Furthermore, works that integrate the above features in pricing models are assuming deterministic and homogeneous population characteristics. In this paper, we first demonstrate by case studies in Zurich urban road network, that the output of a agent-based simulator is consistent with the physics of traffic flow dynamics, as defined by a Macroscopic Fundamental Diagram (MFD). We then develop and apply a dynamic cordon-based congestion pricing scheme, in which tolls are controlled by an MFD. And we investigate the effectiveness of the proposed pricing scheme. Results show that by applying such a congestion pricing, (i) the savings of travel time at both aggregated and disaggregated level outweigh the costs of tolling, (ii) the congestion inside the cordon area is eased while no extra congestion is generated in the neighbor area outside the cordon, (iii) tolling has stronger impact on leisure-related activities than on work-related activities, as fewer agents who perform work-related activities changed their time plans. Future work can apply the same methodology to other network-based pricing schemes, such as area-based or distance-traveled-based pricing. Equity issues can be investigated more carefully, if provided with data such as income of agents. Value-of-time-dependent pricing schemes then can also be determined.  相似文献   

5.
In this paper, we investigate an area-based pricing scheme for congested multimodal urban networks with the consideration of user heterogeneity. We propose a time-dependent pricing scheme where the tolls are iteratively adjusted through a Proportional–Integral type feedback controller, based on the level of vehicular traffic congestion and traveler’s behavioral adaptation to the cost of pricing. The level of congestion is described at the network level by a Macroscopic Fundamental Diagram, which has been recently applied to develop network-level traffic management strategies. Within this dynamic congestion pricing scheme, we differentiate two groups of users with respect to their value-of-time (which related to income levels). We then integrate incentives, such as improving public transport services or return part of the toll to some users, to motivate mode shift and increase the efficiency of pricing and to attain equitable savings for all users. A case study of a medium size network is carried out using an agent-based simulator. The developed pricing scheme demonstrates high efficiency in congestion reduction. Comparing to pricing schemes that utilize similar control mechanisms in literature which do not treat the adaptivity of users, the proposed pricing scheme shows higher flexibility in toll adjustment and a smooth behavioral stabilization in long-term operation. Significant differences in behavioral responses are found between the two user groups, highlighting the importance of equity treatment in the design of congestion pricing schemes. By integrating incentive programs for public transport using the collected toll revenue, more efficient pricing strategies can be developed where savings in travel time outweigh the cost of pricing, achieving substantial welfare gain.  相似文献   

6.
This paper extends the work on Pareto-improving hybrid rationing and pricing policy for general road networks by considering heterogeneous users with different values of time. Mathematical programming models are proposed to find a multiclass Pareto-improving pure road space rationing scheme (MPI-PR) and multiclass hybrid rationing and pricing schemes (MHPI and MHPI-S). A numerical example with a multimodal network is provided for comparing both the efficiency and equity of the three proposed policies. We discover that MHPI-S can achieve the largest reduction in total system delay, MHPI can induce the least spatial inequity and MHPI-S is a progressive policy which is appealing to policy makers. Furthermore, numerical results reveal that different classes of users react differently to the same hybrid policies and multiclass Pareto-improving hybrid schemes yield less delay reduction when compared to their single-class counterparts.  相似文献   

7.
The rationale for congestion charges is that by internalising the marginal external congestion cost, they restore efficiency in the transport market. In the canonical model underlying this view, congestion is a static phenomenon, users are taken to be homogenous, there is no travel time risk, and a highly stylised model of congestion is used. The simple analysis also ignores that real pricing schemes are only rough approximations to ideal systems and that inefficiencies in related markets potentially affect the case for congestion charges. The canonical model tends to understate the marginal external congestion cost because it ignores user heterogeneity and trip timing inefficiencies. With respect to the relevance of interactions between congestion and congestion charges and tax distortions and distributional concerns, recent insights point out that there is no general case for modifying charges for such interactions. Therefore the simple Pigouvian rule remains a good first approximation for the design of road charging systems.  相似文献   

8.
We propose a proactive route guidance approach that integrates a system perspective: minimizing congestion, and a user perspective: minimizing travel inconvenience. The approach assigns paths to users so as to minimize congestion while not increasing their travel inconvenience too much. A maximum level of travel inconvenience is ensured and a certain level of fairness is maintained by limiting the set of considered paths for each Origin-Destination pair to those whose relative difference with respect to the shortest (least-duration) path, called travel inconvenience, is below a given threshold. The approach hierarchically minimizes the maximum arc utilization and the weighted average experienced travel inconvenience. Minimizing the maximum arc utilization in the network, i.e., the ratio of the number of vehicles entering an arc per time unit and the maximum number of vehicles per time unit at which vehicles can enter the arc and experience no slowdown due to congestion effects, is a system-oriented objective, while minimizing the weighted average experienced travel inconvenience, i.e., the average travel inconvenience over all eligible paths weighted by the number of vehicles per time unit that traverse the path, is a user-oriented objective. By design, to ensure computational efficiency, the approach only solves linear programming models. In a computational study using benchmark instances reflecting a road infrastructure encountered in many cities, we analyze, for different levels of maximum travel inconvenience and, the minimum maximum arc utilization and the weighted average experienced travel inconvenience. We find that accepting relatively small levels of maximum travel inconvenience can result in a significant reduction, or avoiding, of congestion.  相似文献   

9.
In this paper we formulate the dynamic user equilibrium problem with an embedded cell transmission model on a network with a single OD pair, multiple parallel paths, multiple user classes with elastic demand. The formulation is based on ideas from complementarity theory. The travel time is estimated based on two methods which have different transportation applications: (1) maximum travel time and (2) average travel time. These travel time functions result in linear and non-linear complementarity formulations respectively. Solution existence and the properties of the formulations are rigorously analyzed. Extensive computational experiments are conducted to demonstrate the benefits of the proposed formulations on various test networks.  相似文献   

10.
This paper investigates the impact of cordon-based congestion pricing scheme on the mode-split of a bimodal transportation network with auto and rail travel modes. For any given toll-charge pattern, its impact on the mode-split can be estimated by solving a combined mode-split and traffic-assignment problem. Using a binary logit model for the mode-split, the combined problem is converted into a traffic-assignment problem with elastic demand. Probit-based stochastic user equilibrium (SUE) principle is adopted for this traffic-assignment problem, and a continuously distributed value of time (VOT) is assumed to convert the toll charges and transit fares into time-units. This combined mode-split and traffic-assignment problem is then formulated as a fixed-point model, which can be solved by a convergent Cost Averaging method. The combined mode-split and traffic-assignment problem is then used to analyze a multimodal toll design problem for cordon-based congestion pricing scheme, with the aim of increasing the mode-share of public transport system to a targeted level. Taking the fixed-point model as a constraint, the multimodal toll design problem is thus formulated as a mathematical programming with equilibrium constraints (MPEC) model. A genetic algorithm (GA) is employed to solve this MPEC model, which is then numerical validated by a network example.  相似文献   

11.
Pricing of roadways opens doors for infrastructure financing, and congestion pricing seeks to address inefficiencies in roadway operations. This paper emphasizes the revenue-generation opportunities and welfare impacts of flat-tolling schemes, standard congestion pricing, and credit-based congestion pricing policies. While most roadway investment decisions focus on travel time savings for existing trips, this work turns to logsum differences (which quantify changes in consumer surplus) for nested logit specifications across two traveler types, two destinations, three modes and three times of day, in order to arrive at welfare- and revenue-maximizing solutions. This behavioral specification is quite flexible, and facilitates benefit-cost calculations (as well as equity analysis), as demonstrated in this paper.The various cases examined suggest significant opportunities for financing new roadway investment while addressing congestion and equity issues, with net gains for both traveler types. Application results illustrate how, even after roadway construction and maintenance costs are covered, receipts may remain to distribute to eligible travelers so that typical travelers can be made better off than if a new, non-tolled road had been constructed. Moreover, tolling both routes (new and old) results in substantially shorter payback periods (5 versus 20 years) and higher welfare outcomes (in the case of welfare-maximizing tolls with credit distributions to all travelers). The tools and techniques highlighted here illustrate practical methods for identifying welfare-enhancing and cost-recovering investment opportunities, while recognizing multiple user classes and appropriate demand elasticity across times of day, destinations, modes and routes.  相似文献   

12.
Congestion tolls are considered to be Pareto-improving if they reduce travel delay or improve social benefit and ensure that, when compared to the situation without any tolling intervention, no user is worse off in terms of travel cost measured, e.g., in units of time. The problem of finding Pareto-improving tolls can be formulated as a mathematical program with complementarity constraints, a class of optimization problems difficult to solve. Using concepts from manifold suboptimization, we propose a new algorithm that converges to a strongly stationary solution in a finite number of iterations. The algorithm is also applicable to the problem of finding approximate Pareto-improving tolls and can address the cases where demands are either fixed or elastic. Numerical results using networks from the literature are also given.  相似文献   

13.
This paper examines the effect of cordon pricing based on an urban spatial model of a non-monocentric city where trips may occur between any pair of locations in the city. The model describes the spatial distribution of trip demand and traffic congestion under alternative pricing schemes. We evaluate the efficiency of resource allocation by comparing three schemes: no-toll equilibrium, first-best optimum, and optimal cordon pricing. Optimal cordon pricing is defined as a combination of cordon location and toll level that maximizes the social surplus in a city. Simulations show that cordon pricing is not always effective for congestion management: cordon pricing tends to be effective as the urban structure is more monocentric.  相似文献   

14.
This paper extends the bottleneck model to study congestion behavior of morning commute and its implications to transportation economics. The proposed model considers simultaneous route and departure time choices of heterogenous users who are distinguished by their valuation of travel time and punctual arrival. Moreover, two dynamic system optima are considered: one minimizes system cost in the unit of monetary value (i.e., the conventional system optimum, or SO) and the other minimizes system cost in the unit of travel time (i.e., the time-based SO, or TSO). Analytical solutions of no-toll equilibrium, SO and TSO are provided and the welfare effects of the corresponding dynamic congestion pricing options are examined, with and without route choice. The analyses suggest that TSO provides a Pareto-improving solution to the social inequity issue associated with SO. Although a TSO toll is generally discriminatory, anonymous TSO tolls do exist under certain circumstances. Unlike in the case with homogenous users, an SO toll generally alters users’ route choices by tolling the poorer users off the more desirable road, which worsens social inequity. Numerical examples are presented to verify analytical results.  相似文献   

15.
It is widely recognised that congestion pricing could be an effective measure to solve environmental and congestion problems in urban areas—a reform that normally also would generate a net welfare surplus. Despite this the implementation of congestion pricing has been very slow. One reason for a low public and political acceptance could be that equity impacts have not been given enough concern. In studies of distributional impacts of congestion pricing it has often been claimed that the reform is regressive rather than progressive even if there are studies claiming the opposite. We develop a method for detailed, quantitative assessment of equity effects of road pricing and apply it to a real-world example, namely a proposed congestion-charging scheme for Stockholm. The method simultaneously takes into account differences in travel behaviour, in preferences (such as values of time) and in supply of travel possibilities (car ownership, public transport level-of-service etc.). We conclude that the two most important factors for the net impact of congestion pricing are the initial travel patterns and how revenues are used. Differences in these respects dwarf differences in other factors such as values of time. This is accentuated by the fact that the total collected charges are more than three times as large as the net benefits. With respect to different groups, we find that men, high-income groups and residents in the central parts of the city will be affected the most. If revenues are used for improving public transport, this will benefit women and low-income groups the most. If revenues are used for tax cuts, the net benefits will be about equal for men and women on the average, while it naturally will benefit high-income groups. Given that it is likely that the revenues will be used to some extent to improve the public transport system, we conclude that the proposed congestion-charging scheme for Stockholm is progressive rather than regressive.  相似文献   

16.
It is widely recognized that precise estimation of road tolls for various pricing schemes requires a few pieces of information such as origin–destination demand functions, link travel time functions and users’ valuations of travel time savings, which are, however, not all readily available in practice. To circumvent this difficulty, we develop a convergent trial-and-error implementation method for a particular pricing scheme for effective congestion control when both the link travel time functions and demand functions are unknown. The congestion control problem of interest is also known as the traffic restraint and road pricing problem, which aims at finding a set of effective link toll patterns to reduce link flows to below a desirable target level. For the generalized traffic equilibrium problem formulated as variational inequalities, we propose an iterative two-stage approach with a self-adaptive step size to update the link toll pattern based on the observed link flows and given flow restraint levels. Link travel time and demand functions and users’ value of time are not needed. The convergence of the iterative toll adjustment algorithm is established theoretically and demonstrated on a set of numerical examples.  相似文献   

17.
The benefit, in terms of social surplus, from introducing congestion charging schemes in urban networks is depending on the design of the charging scheme. The literature on optimal design of congestion pricing schemes is to a large extent based on static traffic assignment, which is known for its deficiency in correctly predict travel times in networks with severe congestion. Dynamic traffic assignment can better predict travel times in a road network, but are more computational expensive. Thus, previously developed methods for the static case cannot be applied straightforward. Surrogate‐based optimization is commonly used for optimization problems with expensive‐to‐evaluate objective functions. In this paper, we evaluate the performance of a surrogate‐based optimization method, when the number of pricing schemes, which we can afford to evaluate (because of the computational time), are limited to between 20 and 40. A static traffic assignment model of Stockholm is used for evaluating a large number of different configurations of the surrogate‐based optimization method. Final evaluation is performed with the dynamic traffic assignment tool VisumDUE, coupled with the demand model Regent, for a Stockholm network including 1240 demand zones and 17 000 links. Our results show that the surrogate‐based optimization method can indeed be used for designing a congestion charging scheme, which return a high social surplus. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
This paper examines the profit maximizing behavior of a private firm which operates a toll road competing against a free alternative in presence of cars and trucks. Trucks differ from cars in value of time (VOT), congestion externality, pavement damage, and link travel time function. We find that the firm takes either a car-strategy or a truck-strategy for profit maximization. For a traffic mix with relatively large car volume and small truck volume, the car-strategy results in no trucks using the toll road, while the truck-strategy results in all trucks using the toll road. We derive the equilibrium flow pattern under any combination of car-toll and truck-toll, based on which we identify a profit-maximizing frontier and a strategy-switching frontier in the car-toll and truck-toll two-dimensional space. By geometrically comparing the two frontiers, we establish general conditions under which each strategy will be taken, which suggest that the truck-to-car VOT ratio, the total traffic demand, and the difference in travel distance between the two roads are critical in shaping the firm's strategy.  相似文献   

19.
Interest at the political level in congestion charging is gaining pace as cities struggle with ways to reduce the effects of growing traffic congestion on the liveability of cities. Despite a long history of promotion of a wide array of travel demand management (TDM) initiatives, very few have had a noticeable impact on the levels of traffic on the road networks of metropolitan areas. TDM success in this context has almost become ‘band-aid’ in the absence of a pricing strategy that not only promotes efficient use of the system but also hypothecates revenues to support essential complementary infrastructure and services such as public transport. This paper takes a look at the stream of pricing consciousness that is surfacing around the world. Although very few jurisdictions have implemented congestion charging, or any form of efficient variable car and truck user charging, the winds of change are well in place. The adage “it is not a matter of if but of when” seems to be the prevailing view. Our overview of global trends in positioning the debate and hopefully follow-through commitment to implementation provides a backdrop to papers submitted for this special issue on travel demand management. The predominance of papers on pricing is indicative of the priority that must be given to efficient charging and revenue disbursement.  相似文献   

20.
When total parking supply in an urban downtown area is insufficient, morning commuters would choose their departure times not only to trade off bottleneck congestion and schedule delays, but also to secure a parking space. Recent studies found that an appropriate combination of reserved and unreserved parking spaces can spread the departures of those morning commuters and hence reduce their total travel cost. To further mitigate both traffic congestion and social cost from competition for parking, this study considers a parking reservation scheme with expiration times, where commuters with a parking reservation have to arrive at parking spaces for the reservation before a predetermined expiration time. We first show that if all parking reservations have the same expiration time, it is socially preferable to set the reservations to be non-expirable, i.e., without expiration time. However, if differentiated expiration times are properly designed, the total travel cost can be further reduced as compared with the reservation scheme without expiration time, since the peak will be further smoothed out. We explore socially desirable equilibrium flow patterns under the parking reservation scheme with differentiated expiration times. Finally, efficiencies of the reservation schemes are examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号