首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了检验港珠澳大桥青州航道桥的风致稳定性,对其抗风性能进行研究。采用主梁节段模型风洞试验研究主梁的涡振性能和颤振性能,采用桥塔气弹模型风洞试验研究桥塔自立状态的驰振性能和涡振性能,采用ANSYS软件进行全桥有限元分析研究该桥的静风稳定性。结果表明:港珠澳大桥青州航道桥主梁原始断面和增加风嘴断面涡振性能不满足规范要求,在人行道栏杆上方增设抑流板后涡振性能满足要求;主梁原始断面和增加风嘴断面满足颤振稳定性要求,增加抑流板断面在+5°风攻角下的颤振稳定性不满足要求;桥塔的驰振性能满足要求;均匀流场和紊流场下,桥塔仅在风偏角较小时出现扭转涡振;各初始风攻角下,该桥的静风稳定临界风速均远大于静风失稳检验风速,静风稳定性满足规范要求。  相似文献   

2.
港珠澳大桥跨越崖13-1气田管线桥施工最大悬臂状态受静风荷载作用可能存在静风失稳问题,影响结构正常施工与安全性。为解决上述问题,首先采用静力三分力系数法分析该桥最大悬臂状态设计基准风速作用下的静风效应,明确主梁各断面水平、竖向和扭转位移在不同初始风攻角条件下的发展变化规律;其次,对该桥最大悬臂状态不同初始风攻角作用下的非线性静风稳定性进行分析,基于控制断面的风速-扭转角变化曲线明确结构扭转发散临界风速;最后根据非线性静风稳定性分析结果对该桥最大悬臂状态的静风稳定性进行分析评价。结果表明,在正攻角范围内(0°~5°),主梁横向位移与扭转角最大值分别为-1.47 mm与0.023°,负攻角范围内(-5°~0°),主梁横向位移与扭转角最大值分别为为0.25 mm与-0.007°,在不同初始风攻角作用下结构稳定系数介于1.53~2.58之间。不同初始攻角作用下结构的临界风速介于63~109.6 m·s-1之间,结构在负攻角范围内的临界风速计算值较正攻角高。  相似文献   

3.
为研究山区峡谷地形下非均匀风场对大跨度桥梁静风稳定性的影响,以一座跨越典型山区峡谷地形的大跨度斜拉桥为工程背景,首先,采用计算流体动力学(CFD)软件Fluent对桥址区地形的风场特性进行分析,计算出沿主梁方向的非均匀风速和非均匀风攻角分布;然后,采用ANSYS APDL技术实现能考虑非均匀风速和非均匀风攻角下大桥静风稳定性的非线性分析方法。在此基础上,综合考察非均匀风攻角分布、非均匀风速分布、非均匀风速非均匀风攻角分布等风场条件对大桥静风稳定性的影响,分析各工况下主梁的静风变形与跨中处拉索刚度变化。研究结果表明:与均匀风场条件下的静风响应不同,非均匀风攻角或非均匀风速下主梁静风响应最大值点位于风荷载峰值点与跨中之间,在针对非均匀风场下大桥的静风稳定性分析时,应更注重静风响应最大值点而不是跨中处;非均匀风攻角下大桥的静风失稳临界风速要远低于均匀风攻角的静风失稳临界风速,且其静风稳定性能主要受最大风攻角而不是主跨部分非均匀风攻角的平均值来控制;非均匀风速下大桥的静风失稳临界风速主要由主跨部分的风速平均值和最大值共同影响;主梁的竖向位移和扭转角形状主要由风攻角因素来控制,而横向位移的变化规律相对较独立,其形状基本上以跨中线对称,且其值主要由风速因素来决定。  相似文献   

4.
大跨度桥梁由于其结构轻柔,容易出现静力失稳现象及各种形式的风致振动。通过对节段模型风洞静力三分力试验验证了某宽幅闭口箱梁悬索桥没有出现驰振的可能,并对全桥进行了几何非线性静风稳定分析,得到该桥的静风失稳临界风速。通过风洞弹性悬挂节段模型试验,得到了该桥的颤振临界风速。分析了阻尼比对于颤振临界风速的影响,试验结果表明阻尼比对于颤振临界风速影响不大。在风洞中观察到该桥成桥态在+3°、+5°攻角会出现扭转涡激振动,提高阻尼比可以有效降低涡振振幅。  相似文献   

5.
桁架式主梁断面结构复杂,对其在斜风作用下的静风荷载性能的研究也比较少,以上海闵浦大桥--双层空腹钢桁架结构斜拉桥为工程背景.针对不同风偏角的横向风作用下的桁架结构主梁断面进行风洞实验.并且通过对各风偏角的横向风作用下的主梁的静气动力系数的分解.初步探讨了桁架结构主梁斜风下的静风力系数的计算方法.  相似文献   

6.
桁架式主梁断面结构复杂,对其在斜风作用下的静风荷载性能的研究也比较少,以上海闵浦大桥——双层空腹钢桁架结构斜拉桥为工程背景,针对不同风偏角的横向风作用下的桁架结构主梁断面进行风洞实验,并且通过对各风偏角的横向风作用下的主梁的静气动力系数的分解,初步探讨了桁架结构主梁斜风下的静风力系数的计算方法。  相似文献   

7.
《公路》2017,(1)
为了寻求Maputo大桥较佳气动性能的主梁,针对设计提出的三种方案,采用风洞试验和数值计算相结合的方法,获得三种方案的静风失稳临界风速以及颤振临界风速,对比分析了各主梁的静动力稳定性能。静风稳定性计算结果表明,三种主梁的静风失稳形态均表现为弯扭空间耦合,其中,钢箱叠合梁静风稳定性最优,静风响应也较小;颤振试验结果表明,三种主梁的颤振稳定性均不满足要求,钢箱叠合梁颤振稳定性相对更好;通过在钢箱叠合梁上设置水平导流板,可使其满足颤振要求。  相似文献   

8.
叠合梁断面为典型钝体截面,容易出现气动不稳定问题。为研究三塔叠合梁斜拉桥的抗风性能,以某三塔双跨叠合梁斜拉桥为例,通过有限元软件建立桥梁成桥状态和最大双悬臂施工状态有限元模型,计算分析其动力特性,再进行节段模型风洞试验研究桥梁在-5°、-3°、0°、+3°和+5°风攻角下的颤振稳定性和涡激振动性能。研究结果表明:该三塔双跨斜拉桥颤振临界风速大于颤振检验风速,具有良好的颤振稳定性;成桥状态出现了较为明显的涡激振动现象,在低风速区涡激振动幅值小于规范允许值;虽然在高风速区涡激振动幅值超过了规范允许值,但是出现概率很低,对桥梁安全和使用性能不会造成明显影响;施工状态涡激振动幅值远低于规范限制,涡振性能良好。  相似文献   

9.
为研究边箱叠合梁的涡振抑制措施,优化其涡振性能,以某叠合梁斜拉桥为背景,针对其边箱叠合梁制作主梁节段模型进行风洞试验,研究不同风攻角(0°、±3°、±5)和阻尼比(竖向0.3%、0.6%、0.8%、1.0%,扭转0.5%、1.0%)下主梁的涡振性能,对比有、无人行道栏杆和不同形式封闭人行道栏杆对主梁涡振性能的影响。结果表明:-5°、-3°和0°风攻角下,主梁没有出现涡激振动;+3°和+5°风攻角下,主梁的竖向涡振和扭转涡振最大振幅均远大于规范允许值;主梁的竖向涡振和扭转涡振振幅均随阻尼比的增大而减小,增大阻尼比可以有效抑制主梁的涡振;去掉人行道栏杆后,主梁的竖向涡振消失;对人行道栏杆间隔封闭可以抑制主梁的涡振,相对分散的栏杆封闭方案抑振效果更好,+3°风攻角下较+5°风攻角下抑振效果更优。  相似文献   

10.
随着桥梁设计跨度增大,结构对风荷载作用极为敏感。采用CFD数值模拟方法研究桃花峪黄河大桥主梁断面颤振问题,根据分状态强迫振动法给出了颤振导数识别方法建立了数值计算模型,经计算得出结论:在+5°风攻角下造成竖向振幅为0.03 m所需风速约为13.2 m/s,在+3°风攻角下造成相同竖向振幅所需风速约为14.2 m/s;在+5°风攻角下造成扭转振幅为6°所需风速约为13.1 m/s,在+3°风攻角下造成相同扭转振幅为6°所需风速约为14.0 m/s,风攻角是颤振重要因素;经模拟气动流场得到主梁结构在0°、+3°及-3°攻角下颤振临界状态涡量变化情况可知随着风速增大涡量图为一对细长互不干涉正负涡量逐步增大至正负交替漩涡,在尾流处耦合成2个相互交替大漩涡。  相似文献   

11.
计算流体力学方法的发展给风工程提供了一种可能替代风洞试验的研究手段。以一斜拉桥为模型,采用FLUENT软件分析主梁断面在0°攻角下的速度和压强分布,并得到主梁断面在攻角-5~5°范围内的静三分力系数,为抗风计算提供依据。  相似文献   

12.
为研究在常遇风速下混合梁斜拉桥的涡激振动性能及抑振措施,以半飘浮体系七跨连续双塔混合梁斜拉桥——重庆永川长江大桥为背景,设计基于1∶50主梁节段模型风洞试验,测试在不同阻尼体系下检修车轨道、导流板对涡激振动性能的影响,并对主梁外挂排水管道的形状进行了优化,最后提出了可显著改善主梁涡激振动性能的抑振措施。研究结果表明:主梁在-3°、0°和+3°攻角下均发生了明显的涡激振动现象,+3°攻角下的振幅最大,且远大于规范的容许振幅;向梁底内侧移动检修车轨道,并在其内侧布置导流板可大幅降低主梁的涡激振动振幅;位于斜腹板的圆形排水管道会削弱主梁的气动性能,改用120cm×20cm的扁状排水管道可有效提高颤振临界风速并降低涡激振动振幅。  相似文献   

13.
为了研究大跨高低塔斜拉桥抗风性能,以顺德斜拉桥为工程背景,通过节段模型风洞试验研究桥梁的涡振、颤振性能,并分析桥梁的静风响应性,研究发现:较小的风嘴有利于抑制和减小流线型箱梁的涡振振幅,且不影响颤振稳定性;大桥静风响应随风速变化具有显著的非线性特点,来流风攻角对静风响应影响较小。该研究可为大跨高低塔斜拉桥抗风性能研究提供科学依据和参考。  相似文献   

14.
为了研究一座1 400 m跨径流线型闭口箱梁断面斜拉桥的颤振性能,根据其风致静力失稳或颤振前主梁最大有效风攻角已接近±10°的特点,通过弹簧悬挂节段模型试验,开展了大攻角下桥梁颤振性能研究。试验发现,在4°~10°风攻角下,高风速时模型均出现了弯扭耦合程度较弱的自限幅非线性颤振现象;而在其他攻角下,高风速时模型则表现为常规的发散型弯扭耦合颤振。研究发现,经典的线性颤振理论无法适用于研究试验中大攻角下出现的非线性颤振现象。因此,采用了一种简化的非线性半经验数学模型来表示非线性颤振中的自激扭矩,并从试验模型颤振位移时程中识别得到了模型参数。基于这一非线性自激力模型,通过试验测得的位移信号来构造自激扭矩时程,再利用自激扭矩的做功时程来识别各个气动参数。之后,利用其中的部分气动参数构造气动阻尼,并基于结构阻尼系数与气动线性阻尼系数之和为零的判断条件,提出了一种针对非线性颤振现象的临界风速确定方法,同时将线性和非线性颤振的起振判断条件进行了很好的统一。研究结果表明,利用这一方法求得的颤振临界风速与风洞试验中出现的现象基本吻合。  相似文献   

15.
仙新路过江通道主桥为跨径布置(580+1 760+580) m的悬索桥,桥塔高267 m,加劲梁采用整体式闭口钢箱梁。为研究该桥运营阶段抗风性能,通过1∶50缩尺比加劲梁节段模型风洞试验分析大桥的驰振性能及提高大桥颤振性能的气动措施;通过1∶140缩尺比全桥气弹模型风洞试验,验证大桥的颤振、静风稳定性,并研究桥梁的抖振响应。结果表明:该桥在常遇风攻角范围内(-3°~+3°)不具备发生驰振的必要条件,加劲梁断面具有良好的驰振稳定性;加劲梁原始断面的颤振稳定性不满足规范要求,在中央防撞护栏间增设0.67 m高中央稳定板后,颤振临界风速高于颤振检验风速并具有一定的富余量;采用优化措施后,大桥具备良好的静风与颤振稳定性,加劲梁、桥塔在设计风速下各测点抖振响应值较小且均未发生不稳定振动或发散性振动。  相似文献   

16.
为了解大跨度钢-混凝土结合梁悬索桥的抗风性能,以庙嘴长江大桥大江桥(主跨838m的悬索桥,加劲梁为钢-混凝土结合梁)为背景进行颤振稳定性研究。对该桥进行1∶50的缩尺节段模型颤振稳定性试验,根据试验结果进行气动优化措施分析,采取了在加劲梁断面增加2道1/4下稳定板的措施;针对优化后的加劲梁,进行1∶118的全桥缩尺模型风洞试验,并采用有限元软件ANSYS建立全桥三维有限元模型,进行了施工状态及成桥状态下的颤振分析。结果表明:在加劲梁断面增加2道1/4下稳定板后,提高了桥梁的颤振稳定性能;在-3°、0°和+3°风攻角作用下,该桥在施工状态和成桥状态下的颤振临界风速均大于检验风速,颤振稳定性能满足规范要求,较好地改善了桥梁的抗风性能。  相似文献   

17.
潭州大桥主桥为314m独塔双索面斜拉桥,主梁采用半开口分离双箱断面钢箱梁结构,为研究该桥特殊主梁断面的风致振动问题,提出有效的控制措施,通过制作该桥主梁节段1∶40缩尺模型进行一系列风洞试验,研究分析了主梁半开口分离双箱梁断面的涡激共振响应特性、漩涡脱落原因及其气动优化措施等。结果表明:半开口分离双箱梁断面在+3°风攻角下发生大幅竖弯涡振,振幅超过公路桥梁抗风设计规范的限值;来流上游侧人行道墙式防撞护栏是导致涡激振动发生的最主要原因,检修车轨道和检修道栏杆对竖弯涡振起放大作用;设置检修车轨道遮风板可以一定程度降低涡振振幅,但作用有限。使用高透风率的钢结构人行道防撞护栏能够有效降低竖弯涡振振幅,可满足桥梁抗风设计规范的要求。  相似文献   

18.
采用节段模型风洞试验的方法对某峡谷底斜拉桥---西藏迫龙沟斜拉桥的抗风性能进行了改善研究。首先,借助于地形风洞试验结果获得了桥位处风攻角和风偏角大小,并确定了大桥颤振检验风速和颤振试验的风攻角范围;然后,考察了大桥原方案的颤振稳定性并通过气动措施改善了原方案的颤振性能;最后检验了施加气动措施前后大桥涡激共振特性。研究结果表明:峡谷底大跨度桥梁的设计基准高度可参照桥面高度确定,但有必要进行地形试验确定桥位处风攻角和风偏角的实际情况;迫龙沟大桥颤振稳定性出现了±3°和0°风攻角下满足要求而5°风攻角下不满足要求的现象,因此峡谷底大跨度桥梁颤振稳定性检验只进行《规范》建议的风攻角试验可能存在安全隐患;颤振性能改善措施选取时,应考虑斜风的不利影响,确保大桥有足够的颤振稳定性安全储备。  相似文献   

19.
反向芬克式桁架结构作为近年来新兴的桥梁结构形式,具有简洁和造型美观等优点,已在国外多座人行桥中得到应用。鉴于人行桥结构轻柔等原因,该类型人行桥的风效应问题成为设计关注的重点之一,但国内相关研究较少。现依托主跨150 m的反向芬克式行架人行桥工程实际,开展了系统的抗风性能试验研究。结果表明:参照我国《公路桥梁抗风设计规范(JTG/T3360-01-2018)》,该桥的颤振稳定性、静风稳定性等都满足要求;在均匀流场的0°和+3°风攻角下,涡激共振峰值振幅超过规范允许值,在5%紊流度、将结构阻尼比从0.3%增加到1%之后,涡激共振得到不同程度的抑制,并满足规范要求;进一步分析表明,增加结构阻尼比,将是更为有效的抑制该桥主梁涡激共振的措施。  相似文献   

20.
推荐了2种使用钢管主梁及正交异性钢板桥面的新型斜拉桥:具有双面索的双钢管主梁桥和具有单面索的三钢管主梁桥.采用新桥式设计了主跨500 m的斜拉桥,并通过静力分析验证了其可行性.通过风洞试验了解桥梁的空气动力特性,对于双钢管主梁桥模型,在风速超过75 m/s(攻角α=0°、+3°)时发生扭转颤振;对于三钢管主梁桥模型,在风速超过115 m/s时发生扭转颤振,显示出超强的空气动力稳定性.通过计算机渲染和木模型研究了该桥型的美学,结果显示,此新型斜拉桥不仅结构比例合适,而且很有吸引力、与周围环境协调.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号