首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
提出了基于有限元模型修正的单车通过多梁式桥梁的移动荷载识别方法.首先采用Butterworth低通滤波器对现场采集到的24 h内所有过桥车辆产生的桥梁动位移信号进行滤波处理,提取静力响应极值,并严格按照车型进行分类统计;其次,对观测桥梁进行基于静力试验的有限元模型修正,建立能够反映桥梁真实状态的基准有限元模型;最后将修正后的有限元模型输入至自行研发的BDANS软件中的多梁式车-桥耦合振动模块,以车型为单位,依据该车型车辆在桥面横向移动时各主梁竖向位移响应分配关系,结合多梁式车-桥耦合振动模块以及实测车辆过桥时各主梁静力极值响应,识别出车辆在桥面行驶的横向位置,然后根据识别出的车辆横向行驶位置和实测桥梁响应识别出车质量.结果表明:该识别方法较为可靠,识别精度较高,能按照车型批量进行识别,可大规模处理交通荷载数据.  相似文献   

2.
将整个车桥系统划分为车辆与桥梁两个子系统,引入车桥系统几何协调条件和力学平衡关系,采用含增量动力平衡迭代格式的Newmark-β方法编制了汽车-桥梁系统空间耦合振动分析程序,并采用弹簧质量系统匀速通过简支梁对程序的可靠性进行了验证。然后以杭州湾跨海大桥为工程实例,运用所编制程序详细研究了车辆数目、车辆间距、不同车道、车辆相向行驶、不同路面粗糙度以及不同车速时车流通过桥梁时主梁跨中的动力响应和冲击系数。研究发现:主梁跨中冲击系数随着路面粗糙度变坏而明显增大,与车辆数目、车辆间距、车辆相向行驶以及车速没有必然联系。  相似文献   

3.
为了研究大跨桥梁在风、车及地震联合作用下的动力响应,在已有风-车-桥耦合振动分析程序的基础上,利用大质量法模拟桥梁受到的地震作用,建立了地震-风-车-桥耦合振动分析的数值模拟平台,通过质量-弹簧-阻尼系统模拟车辆模型,利用有限元方法建立桥梁模型,采用谱表示法模拟路面粗糙度、风场和地震动,通过分离迭代方法求解地震-风-车-桥耦合振动系统的动力响应。以主跨1 088 m的苏通大桥为例,基于建立的地震-风-车-桥耦合振动分析平台,计算分析了日常风荷载与地震联合作用下桥梁和车辆的动力响应;并进一步探究了地震动完全空间变异性对地震-风-车-桥耦合系统车桥动力响应的影响。结果表明:处于日常运营阶段的大跨桥梁结构(仅承受风和车辆荷载)受到突发地震时,桥梁和桥上行驶车辆的动力响应将急剧增加,地震动对车-桥系统动力响应起控制作用;与地震-车-桥系统中的桥梁响应相比,考虑风荷载会增加主梁跨中的横向振动,但对主梁跨中的竖向振动会有抑制作用;与只考虑地震荷载作用的车桥响应相比,同时考虑地震和平均风速为20 m·s-1的脉动风荷载联合作用下的主梁跨中横向位移极值最大增大约40%。虽然地震动是车桥耦合振动的控制荷载,但是日常风荷载对大跨桥梁车桥振动的影响不可忽略。地震发生后,车辆的横向加速度极值超过0.5g,竖向加速度极值接近1g,可能引起车辆的侧滑或翻滚,车辆的运行行为有待进一步研究。与仅考虑地震动行波效应相比,考虑地震动完全空间变异性的车桥振动响应不仅在波形上产生很大差异,而且响应极值也发生了较大的变化,可见在地震动输入时需要考虑完全空间变异性来保证得到的车桥响应结果偏于安全。  相似文献   

4.
为实现刹车时桥上多状态车流并行动态演化的高真实度模拟和时变汽车荷载与桥梁运动状态的时时耦合,首先从宏观和微观上丰富随机车流模拟方法,宏观上沿用交通荷载调查数据中的车辆顺序、车辆基本特性等不变量,以车辆间距为服从正态分布的限幅随机变量,形成深度融合交通荷载调查数据和交通流理论的随机车流高真实度仿真方法;微观上对车辆间距随机变量确定的关键状态-阻塞状态,引入加权速度,实现阻塞密度时车流的走走停停动态描述,采用考虑驾驶人状态的概率分布方法确定车辆时距;实现多密度随机车流的高真实度仿真。其次细化刹车过程模拟,建立车流差异化刹车模型:采用顺次对比方法,筛选桥长范围最不利刹车车流;引入停车视距,考虑驾驶人反应,区分头车和跟驰车辆,精细模拟车辆刹车动态过程和刹车车流演化过程,差异化确定各车辆刹车参数;实现桥上多状态车流并行动态演化模拟。第三建立刹车力学模型,并融入至已有正常车流的车-桥耦合系统,构建可考虑刹车状态的分析系统。最后确定桥梁典型响应和分析指标,以一座大跨斜拉桥为例,对多刹车工况下的桥梁响应进行分析。结果表明:桥上刹车状况一般会产生超过正常行驶状况下的桥梁响应,最不利单车道刹车状况下的塔根弯矩甚至达到跑车工况的2.7倍,简单采用规范冲击系数方法很难实现刹车响应的包络;刹车过程中的桥梁响应最值不仅与采取刹车的车辆数目和桥上车辆保有量有关,还受刹车作用与桥梁原响应趋势的顺逆程度控制;桥梁及桥上刹停车辆的总质量和桥上正常行驶的车辆决定桥梁响应时程曲线趋势振幅;典型桥梁响应的总体趋势,与车流密度和刹车车道数相关性较小,不同时段车流会对梁端顺桥向位移和塔根弯矩产生影响。  相似文献   

5.
为了研究风-车-桥耦合系统中车-桥系统的振动特性及车辆行车安全特性,得到车辆在大跨度桥梁上行驶时车辆的安全行驶临界风速,对车辆通过大跨斜拉桥时车辆的气动特性、车-桥系统的振动特性及车辆的行车安全特性进行研究。研究风荷载作用下车辆在大跨度桥上行驶时车辆的行车安全临界风速,分析车辆行驶速度、路面状况及风偏角对车辆行驶安全临界风速的影响。车-桥系统的耦合振动会导致车-桥系统周围风场的特性发生变化,风场的变化会导致下一时刻车-桥系统的受力状态发生改变。考虑车辆运动及车-桥系统的振动与车-桥周围风场的相互影响,基于双向流固耦合数值模拟,建立风-汽车-桥梁空间耦合振动数值分析模型。通过风-车-桥耦合系统三维数值分析,得到了风荷载作用下车辆在大跨度桥上行驶时不同状况下车辆的倾覆及侧滑临界风速。结果表明:基于双向流固耦合数值分析能够较精确地模拟风-车-桥耦合振动系统;风荷载作用下车辆在桥上行驶时,车辆的振动特性主要由汽车-桥梁系统决定,车-桥系统的振动特性受自然风荷载影响;侧向风荷载作用下车辆的倾覆力矩系数及侧向力系数并不一定为最大值,车辆在大跨径桥上行驶受侧向风荷载作用并不一定为行车安全分析的最不利状况。  相似文献   

6.
为了解决大跨度桥梁在随机车辆荷载和风荷载作用下局部应力求解耗时问题,首先以矮寨大桥为工程背景,建立壳-梁混合单元有限元模型,确定大桥应力的关键位置及关键点,采用分段拟合方法获得随机车辆荷载的影响面函数和风荷载的影响线函数;结合吉茶高速实际交通量特征及随机参数分布特征,采用蒙特卡罗方法,编制抽样程序生成随机车流样本。其次采用风-车-桥耦合振动分析获得典型车辆的等效车辆荷载;引入风荷载动力影响系数,提出了一种简便实用的随机车流下大跨度桥梁风致应力分析方法。最后应用ANSYS计算分析结果验证所提方法的正确可行性,分析矮寨大桥在随机车流和风荷载联合作用下的关键点应力响应。结果表明:风速低于15 m·s-1时,风荷载引起大桥关键点应力响应远小于车辆荷载引起的应力响应;繁忙车流下应力响应的幅值并不比稀疏车流下的应力幅值大很多,但是繁忙车流下应力响应的峰值数量远大于稀疏车流下的峰值数量,即应力的循环次数多,会增大桥梁的疲劳损伤。  相似文献   

7.
大跨桥梁上的车流重力动态分布和作用在变形主梁上的时变纵向力,决定梁端伸缩缝纵向变形,实现伸缩缝纵向变形分析,车-桥耦合系统是核心,实现车流重力分布和纵向力计算加载的车流微观行驶行为仿真及力学化的理论方法是关键。首先,从元胞尺寸和行驶规则2个角度对仿真方法进行精细:把实测车型典型轴距对标当前市场车型,确定各车型车辆前、后悬长并纳入车长考虑,基于多车型的车长公约数综合确定元胞尺寸,使得各车型的车长在仿真交通流中得到差异且全面的元胞表达,奠定精细仿真元胞基础;在车间距基础上,把车速差纳入考虑,丰富车辆微观行驶决策因素,并设定多级变速和变道优先权,从宏观规则和处置细节上对车流行驶微观行为进行精细化。其次考虑到车速是车辆行驶行为的直观表现,采用动量定理实现车辆变速行为到纵向力(力矩)的转换;把纵向力(力矩)均分加载在车辆占据的各元胞中心,实现车辆出、入桥力学过程的适度精细模拟;匹配车辆行驶行为,调整车流判断流程和加载识别部分,完善微观车流-桥梁分析系统。最后,以一座斜拉桥为工程背景,对不同密度组成的车流作用下伸缩缝的纵向变形进行分析。结果表明:①与单向车流相比,计算密度下双向车流的总体纵向力在均值和极值上的加强度的极值分别为1.6和1.5,即双向车流有相互作用,总体表现为抵消;②车流重力因素产生的主梁纵向变形较为稳定,伸缩缝纵向响应时程曲线围绕重力产生的伸缩缝纵向变形均值上下波动,波动幅度总体趋势受密度控制,在正、负(方向)上的极值和均值随车流密度增大大体均呈增大趋势,波动局部受上下行密度差控制,当双向车流密度之和一定时,双向车流的密度差越大,极值和均值就越大;③伸缩缝纵向位移服从正态分布,伸缩缝累积行程随车流总密度、上下行密度差增大呈增大趋势,车流密度、密度差越大,伸缩缝磨损范围越大,磨损程度越严重。  相似文献   

8.
多车道公路桥梁各行驶车道的车流和荷载特性分布具有显著的差异性,由这些差异性引起的结构响应特性应是桥梁管养关注的重点。根据某单向4车道高速公路实测的WIM数据,分析其运营阶段的交通荷载特性,及在实际车流荷载作用下桥梁结构的真实响应。研究结果表明:不同行驶车道的车型分布具有显著差异性,90%以上的货车偏向于外侧两个车道行驶;车辆总重和轴重水平较规范基础数据有明显的提高;各行驶车道随机车流产生的荷载效应最大值基本大于规范值,外侧车道上荷载效应远大于内侧超车道,说明目前规范基于车道荷载独立同分布的假定与实际情况不相符,车辆荷载模型已无法满足实际的结构设计评估要求,建议修正。  相似文献   

9.
为研究波浪对跨海桥梁风车-桥耦合振动系统的影响,针对跨海桥梁所处风大、浪高的极端环境,建立了波浪-风-列车-桥梁动力模型,将风场视为空间相关的平稳高斯过程,高速列车采用质点-弹簧-阻尼器模型模拟,精细化全桥模型通过有限元方法建立,考虑风-列车-桥梁之间的耦合作用,波浪作为外部荷载施加到该耦合体系中。以主跨532 m某海洋桥梁为例,通过自主研发的桥梁科研软件BANSYS (Bridge Analysis System),分析了波高、风速、车速对耦合模型车辆和桥梁响应的影响。结果表明:风车-桥耦合振动体系的车辆和桥梁响应受波浪影响显著,车辆和桥梁响应在与波浪荷载一致的方向增加显著,15 m·s-1风速下,考虑波浪影响的车辆横向加速度最大值约是不考虑波浪时的1.3倍,考虑波浪影响的跨中横向位移最大值约是不考虑波浪时的22倍,而在非一致方向波浪对车-桥响应的影响较小;不同风速下,波浪对车辆横向加速度影响显著,考虑波浪影响的车辆横向加速度约是不考虑波浪时的1.2倍,而车辆竖向加速度、轮重加载率、倾覆系数等指标主要受风速的影响;波浪基频与桥梁横向位移响应谱主峰频率一致,波浪已成为影响桥梁横向位移响应的控制因素;波浪减弱了车速对车-桥响应的影响,随着波高的增加,车辆和桥梁响应对车速的变化更不敏感。  相似文献   

10.
为了研究类似云南省这样的高原山区低等级公路桥梁实际运营状态下的交通荷载特性及车辆荷载作用效应,首先,基于动态称重获得了云南某低等级公路桥梁的监测数据,得到了该区段车型、车重、车速、车长、轴距和轴重等数学模型。其次,基于传统的元胞自动机模型,对元胞长度、更新步长、换道、行驶的规则及其边界条件做进一步细化研究,提出了适用于山区低等级公路桥梁交通流模型的具体参数值,建立了精细化的元胞自动机模型。最后,根据影响线加载的方式,对该路段上某简支钢箱梁桥在随机车流模拟作用下的荷载效应进行了分析,并且利用雨流计数法整理得出了符合本地区实际交通状况作用下的应力幅和循环次数。结果表明:该元胞自动机模型可以较好地还原车型比例、车速、车长、车头时距等特征参数,模拟车流与实际交通状况吻合较好,从而验证了模型的准确性,该模拟方法可为同类问题提供参考依据。根据随机车流加载得到的车辆荷载效应,对比了《公路钢结构桥梁设计规范》、英国BS5400规范、美国AASHTO规范中的疲劳荷载计算模型作用下的应力幅值。实际交通模拟得到的应力幅值高于规范计算值,表明山区低等级公路由于交通管控不力,导致超载现象严重,桥梁的疲劳问题更加突出。  相似文献   

11.
刘勇  晏万里  殷新锋 《公路与汽运》2022,(1):139-141,154
为精确分析大跨悬索桥在重型车辆作用下的振动响应,基于LS-DYNA程序,根据实际重型车辆结构特性建立精细的三维车辆模型,将车辆子系统和桥梁子系统进行耦合,建立实体单元的车桥耦合振动模型;设置多种荷载工况,对比分析主梁各特征点位置的竖向位移、吊杆和主梁顶板的动力响应.  相似文献   

12.
为了提高桥梁挠度及冲击系数测试的稳定性,在传统悬锤法基础上,基于弹簧预紧效应,提出了预紧弹簧法。首先依据车-桥耦合振动理论,以简支梁桥为对象推导了车辆-桥梁-预紧弹簧耦合振动方程,进行了室内试验和系统数值验证;在此基础上分别建立了车辆-桥梁-悬锤系统和车辆-桥梁-预紧弹簧系统的有限元模型,利用数值解法分析了横向风荷载对悬锤法和预紧弹簧法测量主梁挠度及冲击系数的影响;根据建立的车辆-桥梁-预紧弹簧耦合振动系统,研究了影响该方法精度的关键性因素,并给出系统参数选型优化经验公式。最后,以一座30 m预制装配式简支箱梁桥为例,在随机车载激励下,进行支架法、悬锤法和预紧弹簧法3种方法的对比试验。研究结果表明:预紧弹簧法与传统悬锤法相比,冲击系数受风荷载影响较小;无风环境下,预紧弹簧法易受铁丝抗拉刚度、弹簧刚度和悬挂长度的影响,而与初始预紧力值无关;通过合理选用参数,预紧弹簧法能够实现主梁与系统同相位振动;工程实例表明该方法与支架法挠度冲击系数平均误差为6.1%,精度高于悬锤法测量结果,该方法也可为桥梁结构静动载大位移测试提供借鉴。  相似文献   

13.
风环境下大跨度斜拉桥上的车辆驾驶舒适性评价   总被引:1,自引:0,他引:1  
建立了风环境下行驶于大跨度桥梁上的车辆驾驶舒适性评价体系.在综合考虑汽车-桥梁系统空间耦合关系的基础上,提出了能够考虑桥梁的静风响应、抖振响应、汽车-桥梁耦合振动、系统的时变特性以及结构几何非线性和气动荷载非线性影响的风-汽车-桥梁系统空间耦合分析模型,该模型可以预测风环境下桥梁上通行车辆的行驶安全性及驾驶舒适性;建立了车辆驾驶员位置处驾驶舒适性评价方法,并采用ISO 2631-1-1997标准对不同路面粗糙度下行驶于杭州湾跨海大桥的车辆驾驶舒适性进行了评价.评价结果表明:路况越差,车辆的驾驶舒适性越差,且所计算工况下车辆的竖向和侧向驾驶舒适性均满足ISO 2631-1-1997标准.  相似文献   

14.
为了探明流冰撞击桥墩对高速车辆-轨道-桥梁耦合系统动力学行为的影响,采用精细化有限元模型模拟了流冰撞击桥墩的过程,计算获得了不同冰排特性下流冰撞击力时程曲线,基于列车-轨道-桥梁动力相互作用理论,以流冰荷载作为外激励,建立了高速车辆-轨道-桥梁-冰击动力学分析模型。以5跨32 m简支梁为例,通过研究不同冰击荷载作用下桥梁结构的动力学响应,得到了对桥梁结构影响最大的冰击荷载,分析了在该冰击荷载作用下桥梁子系统和车辆子系统的动力学响应,最后探讨了冰击荷载对桥上列车走行性的影响。结果表明:在冰击荷载作用下,冰排厚度、流冰撞击速度和冰排抗压强度是影响桥梁动力学响应的关键参数,桥梁跨中和墩顶横向位移与加速度随冰排厚度和抗压强度的增加而增大,且随流冰撞击速度的增加呈先增大后减小趋势;流冰撞击桥墩对车辆-轨道-桥梁系统动力学响应影响显著,在冰击荷载作用下主梁横向位移和加速度增幅较大,跨中横向加速度主频与桥梁横向自振频率接近,表明流冰撞击可能会加剧桥梁横向自振频率附近的振动;车体横向振动加速度、脱轨系数、轮轨横向力和轮重减载率在流冰撞击作用下均明显增大,增幅超过2倍,可见流冰撞击对高速列车行车安全性和乘坐舒适性有较大影响。  相似文献   

15.
以某斜拉桥健康监测系统为基础,介绍了动态交通荷载监测系统的应用。通过动态交通荷载监测系统,得到特定情况下行驶车辆的出现及车辆的重量、车速、轴距、车辆类型以及有关车辆的其他参数。同时通过实际车辆荷载作用下桥梁结构响应与计算值的比对,得出桥梁结构实际承载能力情况,为今后该地区公路桥梁的运营提供真实的荷载依据,同时也为桥梁结构整体性能评价提供参考。  相似文献   

16.
分别建立了具有7个自由度的3D整车模型的振动方程和连续曲线梁桥的运动方程,将车辆和曲线梁桥分为相互联系的两个振动子系统——车辆和桥梁系统。利用有限元法及模态叠加综合技术,以车轮与桥面相互接触处保持不脱离为位移协调条件,推导出车桥耦合振动方程,并运用Newmark-β数值方法对耦合系统进行迭代求解。以一实际工程桥梁为背景,分析该曲线梁桥在单车荷载作用时,不同行车速度、不同路面等级的振动响应。结果表明:车速对曲线梁桥的竖向挠度的影响很大,但对横向振动的影响比较小;在同一车速情况下,路面的不平度对曲线桥梁的冲击影响显著,路况越差,冲击越大;曲率半径越大,桥梁的横向振动响应越小,而竖向振动响应却越大。  相似文献   

17.
《公路》2021,(6)
基于茂湛高速公路等4个典型路段车辆数据,研究了广东省高速公路改扩建桥梁车辆荷载特性及多车道荷载模型。利用典型路段计重收费数据,研究其交通分布规律、车辆荷载分布特性;基于佛开高速公路实测动态称重数据,根据其交通流分布规律模拟了多车道随机车流;建立了广东省高速公路改扩建桥梁多车道荷载效应计算模型。研究表明:广东省典型高速公路车辆荷载具有明显时变特性且各车型占比不同,外侧车道货车流量显著大于内侧车道;提出了广东省改扩建中小跨径桥梁(l50m)多车道荷载模型的统一形式:基于影响线同号区域加载"均布线荷载q_k=13.0kN/m+集中荷载P_k=360kN"的荷载形式,且多车道横向折减系数宜取为1.00(单车道)、0.87(双车道)、0.80(三车道)、0.75(四车道)。  相似文献   

18.
为了研究随机风、车流荷载联合作用下大跨公路悬索桥纵向振动特性,基于元胞自动机原理建立了随机交通流模型,采用平稳高斯过程模拟风荷载,同时考虑随机风、车流与桥梁的相互作用,利用ANSYS和MATLAB混合编程技术建立了风-车-桥空间耦合振动分析平台,并基于该平台对随机风、车流荷载单独作用以及联合作用下某大跨公路悬索桥加劲梁...  相似文献   

19.
引入车流-桥梁耦合振动模型至桥梁结构可靠度分析中,提出了随机车流作用下大跨桥梁动力响应的简化分析方法,应用于桥梁动力位移极值外推与首超失效概率评估。基于中国某高速公路的动态称重数据,模拟了稀疏和密集状态的随机车流,建立了主跨为200m连续刚构桥梁的车载效应概率模型。工程实例分析结果表明:随机车流-桥梁耦合振动分析结果为时程曲线,可视为随机过程的一个样本,而Rice公式可捕捉到该曲线的概率特征,可用于研究考虑车流-桥梁耦合振动效应的极值外推;随着输入车流样本的增长,桥梁响应均值与标准差趋于稳定,随机车流作用下大跨桥梁的荷载效应满足平稳随机过程假定;连续刚构桥在密集车流作用下的关键失效点位于中跨跨中,当现有密集车流占有率由1.2%增大到3.6%时,该桥梁的位移首超可靠指标从5.76下降至5.60。  相似文献   

20.
基于风-车-桥耦合系统振动理论,建立风-车-桥耦合系统的运动方程。运用自编风-车-桥耦合程序,计算不同路面、不同车速和不同风速下车轮竖向接触力,分析路面等级、车速和风速对车辆行驶安全性的影响;以车轮折算压力为标准,采用概率统计方法建立车辆侧滑和侧倾事故模型,提高事故分析的可靠性,并结合工程实例,对风环境下车辆的动力响应进行了分析。计算了车辆行驶在不同车速下侧倾临界风速、不同风速下侧倾临界车速和4种不同路面状况下侧滑临界风速,为车辆在桥上行驶安全风速和车速确定提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号