首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
陈耀阳 《时代汽车》2023,(20):139-141
随着电动汽车发展的热潮一浪卷一浪,我国电池管理技术趋于成熟。现在的产业链打通也为日后向更高层次的电池运用管理打下了坚实的基础。为解决电动汽车电池管理系统的问题,研究了一种基于电压、电流、温度和阻抗的电池管理系统。首先,分析了系统工作原理,确定了蓄电池电压和电流控制策略;然后,设计了一种新型电池充放电管理算法,并基于Matlab开发出了上位机软件;最后,对所设计的系统进行验证。  相似文献   

2.
电池作为电动汽车的动力源,一直以来被视为电动汽车发展的重要标志性技术,也是制约电动汽车发展的重要瓶颈,其性能好坏直接关系到整车的续驶里程。本文对动力电池管理系统中电压、电流和温度的数据采集方法进行深入分析,为电动汽车动力电池管理系统的设计提供理论基础。  相似文献   

3.
锂电池荷电状态(SOC)的准确估计是电池管理系统的关键技术,为了解析传感器误差对SOC估计精度的影响,以二阶RC等效电路模型为基础,运用遗传算法进行参数辨识,采用扩展Kalman滤波算法进行SOC估计,分析电压、电流传感器存在的漂移和白噪声对SOC估计的影响。结果表明:电压、电流传感器的漂移与SOC估计误差的均值近似呈线性关系,电压、电流传感器存在的白噪声对SOC估计误差的均值无影响;对于实验中的三元锂离子电池,若使SOC估计精度在5%以内,电压的偏差值应控制在10 m V以内、电流偏差值应在1/30 C以内。  相似文献   

4.
高电压采集是电动汽车电池管理系统的最主要任务之一。准确、稳定的高电压采集对电池管理系统估算SOC与SOH和动力电池安全管理等都有着重要意义。本文中提出了一种基于多传感器融合技术和卡尔曼滤波器的高电压采集方法。首先,对两种现有的高压采集方法进行了融合,解决了总电压采集数据的误差和噪声的问题;其次,对融合模型和卡尔曼滤波器进行了改进,精简了数据融合时的复杂计算;最后,通过实验证明所提出的高压采集方法具有较高的精度和稳定性。  相似文献   

5.
高驰 《汽车与配件》2022,(17):30-31
<正>在可以预见的未来,电动汽车的发展还将朝着混动和纯电并存的方向前进。从12V微混到48V轻混,再到800V高压平台在纯电动汽车上的应用,不同技术路线中,动力电池都是核心零部件。而电池管理系统(BMS)作为电池包的管理单元,监控电池的电压、温度和电流,对电池的安全、寿命、性能起到关键作用。随着电动车渗透率的逐年提高,BMS系统的市场需求量也随之攀升。  相似文献   

6.
由于电动汽车车体内存在着高电压、大电流的特点,因而CAN总线是电动汽车通信中较为理想的总线,本文以S3C2440A芯片为处理器搭建了CAN总线通信网络的硬件,以嵌入式Linux系统完成各个节点间的通信;试验结果表明,该系统能够有效地实现对电机控制器、电池管理系统的实时监测和对车内其他设备的通信控制,满足车内各设备间通信的要求。  相似文献   

7.
电动汽车蓄电池组的状态参数主要指各电池工作时的端电压、电流、温度和内阻;为了及时了解各电池的状况及剩余电量,我们以教练用纯电动车为依托,设计了一套能量管理系统。详细研究其核心部分——状态参数监测部分,实现电压、电流、温度、电阻信号的实时采集,然后基于开路电压法与安时累积法,运用一定的算法估算出SOC,并且换算成剩余续驶里程,最后将相关参数在仪表上实时显示。  相似文献   

8.
介绍了锂离子电池组的几种常用充电方法,分别是普通的串联充电、电池管理系统和充电机协调配合串联充电、并联充电。以上3种充电方法都有一些缺点。重点介绍了采用电池管理系统和充电机协调配合串联大电源充电加恒压限流的并联小电流充电的充电方法,这种方法可以有效解决锂离子电池组串联充电易出现的过充电、充不满电等问题,且可避免并联充电的充电电源成本高、可靠性低、充电效率低、连接线径粗等问题,是目前最适合高电压电池组,特别是电动汽车电池组的充电方法。  相似文献   

9.
伴随电动汽车保养量的不断攀升,与此同时电动汽车在使用维护中的安全问题也逐渐显现。相比传统汽车,电动汽车配备有B级电压的高压系统(B级电压是指最大工作电压为30V相似文献   

10.
在对电动汽车电池管理系统(BMS)的测试中,需要电池模拟器来模拟多节锂电池串联后电池电压效果,以便测试BMS对每节电池电压的测量精度,从而评估BMS的品质。专业的电池模拟器做此应用并不合适,同时存在价格昂贵、电压模拟精度不高等缺陷。作者应用TL431,设计制作了一套模拟装置,达到了低成本、高精度模拟的效果。  相似文献   

11.
SOC(State of Charge,电池充电状态)估算是电动汽车电池管理系统的重要功能,准确有效的SOC估算对推动电动汽车核心技术的发展具有重要意义。文章介绍了镍氢电池工作的基本原理及电池管理系统的基本结构等方面技术,阐述了在对电动汽车SOC进行估算的8种方法,并比较各方法在应用中存在的优缺点,指出Ah计量法是目前最常用的方法,且常与其他方法组合使用。  相似文献   

12.
电池荷电状态(SOC)的估算是电池管理系统的关键技术之一。由于电动汽车运行工况复杂多变,电池SOC的估算受电池温差、充放电电流、单体电池一致性等因素的影响,所以很难精确估算出电池的SOC值。而准确估算动力电池SOC可以实时监测电压的变化,有效防止电池过充或者过放带来的危害。文章首先分析了动力电池SOC估算的影响因素,然后对经典SOC估算方法、智能SOC估算方法和耦合SOC估算方法综述,对比分析了各自的优缺点,最后总结了电池SOC的估算方法并提出展望。  相似文献   

13.
本文以三元锂电池为试验对象,设计了一款分布式电池管理系统,该系统可实现对单体电压、温度、总压和总电流等信息的实时采集,计算电池的荷电状态(SOC)和绝缘电阻,根据电池和整车状态控制电池高压的输出,最后,对该系统进行了功能试验,验证BMS各项功能可正常实现。  相似文献   

14.
电池管理系统BMS作为电动汽车储能系统的核心监控系统,是电动汽车开发中的一项核心技术。本文基于d SPACE软硬件搭建电动汽车BMS硬件在环仿真平台,并对电池管理系统进行测试验证工作。文章详细论述BMS电池管理系统功能架构、 BMS硬件在环仿真测试平台、硬件在环仿真测试及结果分析等内容。  相似文献   

15.
任崇 《专用汽车》2023,(9):9-12
随着电动汽车的普及,动力电池成为电动汽车的核心部件之一。电池管理系统的设计对于电动汽车的性能和安全至关重要。据此,首先阐述了电动汽车动力电池工作原理,其次描述了电动汽车电池管理系统设计的三大技术支持,最后提出了电池管理系统的硬件设计研究及软件设计研究。研究结论可为电动汽车电池管理系统的开发和研究提供参考。  相似文献   

16.
钟彦雄 《时代汽车》2023,(5):109-111
电动汽车动力锂电池内部充电状态的评估是电池管理系统状态评估模块的核心。不能用仪器直接测量,只能通过测量蓄电池的外部电流、电压等参数进行评估。准确评估充电状态对于控制电池寿命、功率和安全性非常重要。根据算法的不同,分为传统的开路电压法、电流积分法、基于数据传输的机器学习阻抗法、基于模型的卡尔曼滤波算法、粒子滤波算法和融合算法。介绍不同评估算法的计算原理,分析比较了不同评估算法的计算复杂度和精度。针对当前锂离子电池充电评估研究中存在的问题,指出锂离子电池充电评估的研究方向和未来发展方向是更具通用性、更高精度和更好实时性的多种评估方法。  相似文献   

17.
为解决传统级联式电动汽车复合电源构型复杂的问题,提出一种简化级联式电动汽车复合电源及其控制方法,该结构通过控制3个MOSFET,可实现6种工作模式,并对各工作模式的实现过程进行具体分析,在此基础上,进行仿真验证,结果证明了各工作模式的可行性。为提高复合电源性能和延长电池使用寿命,对电池工作电流进行模糊控制,试验结果表明,模糊控制减小了负载变化和回收能量电压变化引起的电池电流波动,缩短了电池电流到达稳定状态的时间。  相似文献   

18.
电动汽车电池非线性等效电路模型的研究   总被引:4,自引:0,他引:4  
林成涛  仇斌  陈全世 《汽车工程》2006,28(1):38-42,47
服务于电动汽车系统仿真,提出一种非线性等效电路电池模型,模型考虑SOC、温度对电池特性的非线性影响。设计了系统的模型参数辨识实验及数据处理方法,使用S imu link建立了以电流为输入和以功率为输入的镍氢电池组模型。通过1 372 s的FUDS实验验证,两个模型最大电压误差分别为电池组额定电压的1.02%和1.39%,精度满足电动汽车系统仿真要求。  相似文献   

19.
以飞思卡尔的8位单片机MC9S08DZ60、凌力特的长串电池组采集芯片LTC6802为核心部件,设计电动汽车用电池管理系统的采集模块,包括硬件和软件设计,实现电芯电压、温度的实时精确采集功能、SPI及CAN通信功能,并验证该模块的性能有效、可靠。  相似文献   

20.
电动汽车蓄电池组的工作状态主要指各电池在工作时的端电压、工作电流和温度3个参数的变化情况。对电池工作状态的检测通常有集中式检测法和分布式检测法,采用“部分”集中、“整体”分布的思路,将电池分成若干分组,每个分组集中检测,各分组分布检测,同时,采用“桥电容”技术解决了蓄电池组单体端电压检测中存在的参考点选择和被测电池与检测设备隔离的问题,形成了一种具有完全隔离功能的集中/分布式检测法。经过试验,该检测法电压、电流和温度采集功能正常,数据准确、可靠。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号