共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
同步定位与建图(Simultaneous Localization and Mapping,SLAM)技术可使自动驾驶车辆在未知环境中根据车载传感器采集到的数据估计自身位姿,建立环境地图,为车辆的规划、决策提供定位信息,是近年来自动驾驶技术研究的热点之一。基于车载激光雷达的点云数据,聚焦SLAM技术在自动驾驶领域的应用,围绕前端里程计、后端优化和回环检测技术,对国内外相关研究进行综述。考虑到单一传感器的局限性,结合目前多传感器融合研究的热点与难点,展望了自动驾驶多传感器融合SLAM技术在自动驾驶领域的机遇与挑战。 相似文献
3.
室内移动机器人是近年来研究的热点问题,同步定位与建图技术更是移动机器人的关键技术之一。为此文章设计了基于机器人操作系统(ROS)智能车的同步定位与建图系统,以Gmapping为核心算法,首先采用电机编码器构建的里程计对单线激光雷达的每帧数据进行运动畸变补偿,以运动畸变补偿后的激光雷达数据和里程计数据作为Gmapping算法输入;然后通过Gmapping算法粒子初始化,构建考虑观测量的提议分布并对粒子进行采样以估计智能车位姿,以重采样重要性系数对粒子进行重采样并设置重采样阀值,利用二值贝叶斯滤波器对每个粒子的地图状态更新;最后基于Gmapping算法输出智能车的位姿估计和地图数据。试验结果表明,所设计的同步定位与建图系统,在小尺寸环境下对智能车位姿估计和构建的地图较为准确,满足设计目标要求。 相似文献
4.
5.
6.
随着科技的进步,自动驾驶的发展如火如荼,作为其关键技术之一的定位与建图方法目前主要依赖于全球定位系统(Global Positioning System, GPS),这类方法易受天气以及高层建筑物的影响。考虑到现有方法的局限性,文章提出了基于激光雷达的轻量化定位与建图方法,该方法主要由前端配准、回环检测、后端优化、建图等四个部分组成,通过以上几个部分对采集到的周围环境的数据进行提取、匹配、识别、优化,得到兼具精度和鲁棒性的定位与建图效果,为自动驾驶的感知、规划、决策、控制等建立基础。 相似文献
7.
8.
9.
基于GPS和GIS的车辆定位与导航系统的研究 总被引:4,自引:0,他引:4
简要介绍全球卫星定位系统(GPS)和地理信息系统(GIS)及其它们在车辆定位与导航系统(VLNS)中的主要作用;研究该系统的组成以及所能实现的功能;分析了GPS辅助定位的技术方法。 相似文献
10.
在智能车辆的同时定位与建图中,视觉特征点法通过对特征点的提取和匹配进行车辆位姿估计,但当环境缺少纹理或动态变化时,场景的特征稀疏、稳定性差,基于自然特征定位易导致精度下降甚至定位失败。在环境中加入视觉标签可有效解决特征稀疏问题,但基于视觉标签的定位方法高度依赖人工标定,且常因视角变化出现位姿抖动,影响定位的精度。为此,本文提出了一种基于标签的车辆视觉SLAM方法,充分利用标签信息,引入内外角点约束降低标签位姿抖动,同时借助视觉里程计建立低漂移、全局一致的地图;在定位时基于标签估计车辆位姿,并联合优化标签地图与车辆位姿,从而构建低成本、高鲁棒的视觉SLAM系统。试验结果表明,本文方法使用内外角点约束有效降低了标签的位姿抖动,使标签建图精度的提升率超过60%,定位精度的平均提升率超过30%,显著地提高了基于标签定位的精度与鲁棒性,有利于智能车辆的安全运行。 相似文献
11.
传统的车辆同时定位与建图方法多依赖于静态环境假设,在动态场景下易引起位姿估计精度下降甚至前端视觉里程计跟踪失败。本文结合Fast-SCNN实时语义分割网络与运动一致性约束,提出一种动态场景视觉SLAM方法。首先利用Fast-SCNN获取潜在动态目标的分割掩码并进行特征点去除,以获取相机位姿的初步估计;随后基于运动约束与卡方检验完成潜在动态目标中静态点的重添加,以进一步优化相机位姿。验证集测试表明,所训练的语义分割网络平均像素精度和交并比超过90%,单帧图片处理耗时约14.5 ms,满足SLAM系统的分割精度与实时性要求。慕尼黑大学公开数据集和实车数据集测试表明,融合本文算法的ORB-SLAM3部分指标平均提升率超过80%,显著提升了动态场景下的SLAM运行精度与鲁棒性,有助于保障智能车辆的安全性。 相似文献
12.
基于GPS和GIS的车辆定位与导航系统 总被引:2,自引:0,他引:2
车辆定位与导航系统是智能交通系统(ITS)建设的一项基础内容,全球定位系统(GPS)和地理信息系统(GIS)则是车辆定位与导航系统的主要技术支撑。文中论述了GPS定位原理、GIS在车辆定位与导航系统中的作用、车辆定位与导航系统的组成及功能。 相似文献
13.
14.
车辆在行驶过程中车路状况复杂多变,车载摄像机外参数会发生较大的变化,针对采用传统的基于预先标定外参数的方法进行车辆位姿计算会带来较大误差的问题,研究了一种基于实时三线标定的车辆视觉定位方法.基于三线标定法实时标定车载摄像机外参数,降低了其受到车辆震荡和路面环境的影响.然后利用外参数的实时标定结果,结合射影几何和消失点原理对车辆进行位姿计算,获取车道偏离距离和车辆偏转角度信息,从而实现对车辆的定位.通过在不同的路段架设不同高度的车载摄像机进行真实道路实验,计算车辆的位姿.结果表明,在不同路况下,车辆偏离车道线距离的平均误差为7.3cm,偏转角度平均误差为1.5°.该算法通过实时标定车载摄像机外参数,可以有效提高车辆位姿计算的精准性与适应性,对车载摄像机外参数的标定性能明显优于传统的预先标定法. 相似文献
15.
针对无人驾驶车辆变道超车场景,研究基于REINFORCE算法和神经网络技术的无人驾驶车辆变道控制策略。通过车辆动力学模型确定模型的反馈量、控制量和输出限幅要求; 设计神经网络控制器的结构,根据REINFORCE算法设计控制器训练方案; 分析经验池数据数值和方差过大的问题,提出1种经验池数据预处理的方法以改进控制器训练方案; 结合无人驾驶车辆运行场景,分析和研究强化学习过程中产生的奖励分布稀疏问题,并针对该问题提出1种基于对数函数的奖励塑造解决方案; 与PID控制器和LQR控制器进行对比实验验证。实验结果表明,与PID相比,该控制策略有更小的最大误差,变道过程更安全; 与LQR相比,该控制策略性能表现接近,以此证明其用于无人驾驶车辆变道控制任务的可行性。此外,记录在不同平台下该控制策略的执行时间以证明其实时性和在轻量级平台运行的可行性。 相似文献
16.
为解决室内交通场景中智能汽车和移动机器人进行定位计算的问题, 利用室内场景中已存在的各类标志, 引入BEBLID算法, 提出1种视觉定位方法。对BEBLID算法进行改进, 赋予其对图像整体进行特征表征的能力。将定位过程分解为离线阶段和在线阶段, 离线阶段构建场景标志地图。在线阶段中, 首先通过全局特征匹配, 引入KNN方法确定最近节点和最近图像。通过局部特征匹配获得特征点一一对应关系。利用场景特征地图中存储的标志坐标信息, 进行度量计算, 获取当前位置信息。在教学楼、办公楼和室内停车场场景进行实验, 实验中对场景标志的正确识别率达到90%, 平均定位误差小于1 m, 与传统方法相比, 同一样本下识别精度相对提升约10%, 实验验证了算法的有效性。 相似文献
17.
18.
19.
全天候车辆视频检测白天和黑夜车辆时其检测条件差异很大,要选择不同的检测方法。在夜间无补光光源环境下,将摄像机获得的彩色视频图像进行灰度处理,夜间图像中汽车前照灯具有很强的特征,因此对灰度图像进行二值化处理和灰度统计来提取前照灯的特征,根据汽车前照灯在画面中的形态特征设计了相应的定位算法,实现了夜间车辆的定位检测。实验结果表明,该方法实现夜间车辆定位的突出特点是定位准确,且定位时间短,满足了视频交通系统实时性的要求。 相似文献
20.