首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
超级电容器是一种储能装置,其原理是利用电化学双电层储能或在电极材料表面及近表面进行快速、可逆氧化还原反应而储存能量,具有较高的比能量、比功率和较长的循环寿命。介绍了超级电容器电极材料的储能机理、特点及应用,并对石墨烯、二氧化锰及其复合电极材料在超级电容器中应用的最新研究进展进行了重点说明。  相似文献   

2.
以农业废弃物玉米芯为原料制备了可满足超级电容器电极使用的玉米芯基活性炭,对该材料的物理性能和电化学性能进行了分析,利用正交试验设计对玉米芯基活性炭的活化工艺进行了研究,筛选出了最优活化条件。试验结果表明,该材料不仅具有较高的比表面积和合理的孔径分布,更具有较高的比电容,其应用于超级电容器可大大降低成本。  相似文献   

3.
超级电容器作为一种新型储能器件,因其优越的功率密度,较高的能量密度被广泛应用于电动汽车、航空航天、电子通信等行业。本文采用原位水热合成的方法创新性地制备了MXene/Ni(OH)2复合材料,并对其作为超级电容器电极材料进行了结构和电化学性能研究。结果表明,复合材料由分层的MXene和覆盖在表面的褶皱Ni(OH)2纳米薄片组成。在1 A/g的电流密度下,MXene/Ni(OH)2的比电容高达1 897.2 F/g,显著高于单一MXene(103.1 F/g)和Ni(OH)2(1 383.3 F/g)的比电容。在8 A/g的电流密度下充放电1 000次后,其初始比电容保持率为92%,表现出优异的循环寿命,具有极大的实际应用潜力。研究发现的MXene和Ni(OH)2的协同作用为MXene基超级电容器电极材料的研究和应用提供了新思路。  相似文献   

4.
介绍超级电容器的原理结构、主要参数和性能指标,概述超级电容器的发展趋势和相关电极材料的研究进展,简述超级电容器在汽车领域应用、维护的要点。  相似文献   

5.
采用农作物加工副产品稻壳作为碳源,通过炭化和活化工艺制备生物质基活性炭材,XRD和SEM测试结果显示采用该工艺制备的高性能活性炭纯度较高,具有多孔结构形貌;氮气吸脱附试验测得稻壳基活性炭(RHC)的BET面积高达2 828 m2/g,为中孔和微孔结构;电化学性能测试结果表明稻壳基活性炭具有稳定的电容性质、较高的比电容(173 F/g)和良好的循环寿命。一系列的测试证明所制备的稻壳基活性炭是一种优秀的超级电容器电极材料。  相似文献   

6.
燃料电池车(FCEV)1.燃料电池和超级电容器混合动力电动车(Fuel Cell and Super Capacity Electric Vehicle)超级电容器是介于传统电解电容器和蓄电池之间的一种新型储能装置,它主要包括双层电容器和电化学电容器。超级电容器是双电层电容器中容量最大的一种,利用高性能活性炭形成的多孔电极和电解质组成的双电层结构获得超大电荷容量,具有充放电速度快、循环寿命长、转换效率高、功率密度大、清洁环保等优点。  相似文献   

7.
FCEV燃料电池和超级电容器混合动力电动车 超级电容器是介于传统电解电容器和蓄电池之间的一种新型储能装置,它主要包括双层电容器和电化学电容器。超级电容器是双电层电容器中容量最大的一种,利用高性能活性炭形成的多孔电极和电解质组成的双电层结构获得超大电荷容量,具有充放电速度快、循环寿命长、转换效率高、功率密度大、清洁环保等优点。  相似文献   

8.
树脂基复合材料是以合成树脂为基体,以纤维为增强材料,经成型技术形成的一种新型复合材料。与钢铁材料、铝合金等传统材料相比,树脂基复合材料具有质量小、比强度高、耐腐蚀、减振性能好、可设计性强、易于加工等优点,在汽车工业中得到广泛应用。本文介绍了树脂基复合材料的性能特点、组成和分类,重点介绍了树脂基复合材料的成型工艺及其在汽车上的应用。  相似文献   

9.
一、目前情况汽车制动器摩擦衬片和离合器摩擦片都是具有高摩擦系数的摩阻材料制品,一般采用石棉增强的有机基复合材料、半金属基复合材料、陶瓷基复合材料、碳碳基复合材料(碳纤维增强的碳基材料)、纸基复合材料或金属陶瓷(粉末冶金)材料制成.以上各类摩擦材料我国除石棉摩擦材料已大量生产外,其他各类摩擦材料目前也都有研制或少量生产.  相似文献   

10.
<正>极中Li Mn2O4(锰酸锂)与负极中AC(高比表面积活性炭)的质量比对混合超级电容器性能有很大影响。对不同Li Mn2O4/AC质量比的混合超级电容器进行了测试,结果发现,Li Mn2O4/AC质量比为1∶1.5时,混合超级电容器性能最好,在0.15 A/g充放电时的比能量为15.6 Wh/kg,1 000次循环后的比能量保持率为94.9%。  相似文献   

11.
2012年3月14日,领先的薄型棱柱超级电容器(又称超级电容器或双电层电容器(EDLC))开发商澳大利亚CAP-XX Limited宣布开发出了一种超级电容器模块,该模块可以为停车起步系统车辆(又称起停、怠速熄火或微混合动力车辆)的引擎供应启动电流,从而降低电池损耗,且无需使用更大容量和更加昂贵的电池.  相似文献   

12.
1 超级电容器的技术特点 超级电容器的研制成功是储能设备(蓄电池)的一次革命.其他储能设备都是由电能转变成化学能,再由化学能转变成电能,2次转变会导致能量损失.超级电容器在充放电过程,形式没有转变,能量也没有损失,充放电效率高达98%.  相似文献   

13.
α-Mn O2具有比电容高、比能量高、电化学稳定性好等特点,已成为赝电容研究的热点材料。本文以液相沉淀法制备的α-Mn O2作为正极活性物质,活性石墨烯(AG)作为负极活性物质,组成了5种正、负极比例的α-Mn O2/AG混合超级电容器。通过测试发现,AG与α-Mn O2比例为1.5∶1时的混合超级电容器具有最高的比容量和比功率,以及最好的循环性能。  相似文献   

14.
超级电容器在电动汽车上的应用   总被引:1,自引:0,他引:1  
超级电容器是一种介于传统电容器和蓄电池之间的新型储能元件,具有功率密度高、充电迅速、使用温度范围宽、寿命长等特性。本文主要介绍了超级电容器的基本原理及特点,超级电容器在电动汽车上的应用状况及应用中面临的主要问题。  相似文献   

15.
超级电容器是一种功率特性明显的储能器件。本文借鉴动力电池设计和制备技术,结合超级电容器储能机理,进行超级电容器单体设计;在此基础上,分别以氢氧化镍和活性炭为正极和负极的活性物质,通过制浆、涂覆、烘干、裁片、叠片、入壳、注液和老化等步骤得到超级电容器单体,研究发现所制备单体具有超级电容器和电池的双重储能特性,测试容量为4000F,循环过程中充、放电效率维持在95%左右。  相似文献   

16.
超级电容器电动车——城市公共交通现代化新模式   总被引:9,自引:0,他引:9  
1超级电容器的技术特点 超级电容器的研制成功是储能设备(蓄电池)的一次革命.其他储能设备都是由电能转变成化学能,再由化学能转变成电能,2次转变会导致能量损失.超级电容器在充放电过程,形式没有转变,能量也没有损失,充放电效率高达98%.  相似文献   

17.
在无轨电车上实现双电源或采用超级电容器或蓄电池和超级电容器,可在市中心交通繁忙地区实现脱辫行驶,取消这些地区架空线网,这是无轨电车发展方向.  相似文献   

18.
超级电容器的优点 超级电容器区别于传统的电解电容器和蓄电池,是近年来一直受到人们关注的一种新型储能器件.它兼具二次电池与静电电容器的双重特点,被称为是一种介于传统电容器和二次电池之间的储能电源.其主要优点是: 1.充电速度快,充电10s~10min,可在很短时间内完成一次充放电循环,远远低于可充蓄电池,可很好满足电动车的起动、爬坡要求.  相似文献   

19.
储存能源的新型车身面板比传统的电池组更轻,具有更好的成本效益。 沃尔沃正在开发一项技术,设计用车身面板替代电动车上传统电池组来储存能量。这块特殊的面板由增强碳纤维薄板和夹在中间的纳米结构锂电池或超级电容器组合而成。该材料提供了更轻量化的能量储存方式,只需要很少的空间,并且具有环境友好和成本高效的特性。 这种储存能量的面板最近安装在S80轿车上进行测试。当采用超级电容器时,它能为混合动力车辆提供动力;当采用锂电池时,它可以安装在全电动汽车上。超级电容器输出的功率高但能量储存不多,而电池则相反,其储存能量多但功率低。  相似文献   

20.
超级电容电动汽车的研究进展与趋势   总被引:10,自引:0,他引:10  
结合超级电容器特点,阐述了超级电容器在混合能源电动汽车上的作用与应用的情况。评述了以超级电容器为唯一能源的电动汽车的特点、存在的问题以及研发情况。认为:超级电容器作为辅助能源在混合能源电动汽车中的应用将越来越得到重视;以超级电容器为唯一能源的电动汽车,也将成为在我国北方城市、作为固定路线运行的城市公交车而得到发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号