首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
为了改善锂离子电池的低温性能,将硬碳和石墨负极材料复合起来,制备成人造石墨-硬碳复合负极材料。采用不同比例的人造石墨-硬碳复合材料制备扣式电池并测试了其电化学性能。结果表明,硬碳∶人造石墨=3∶7比例的材料具有最优的综合性能。使用该比例复合负极制作全电池进行性能测试,结果显示该复合负极材料对锂离子电池的低温放电性能有明显的提升,并且还具备良好的倍率性能和低温循环性能。  相似文献   

2.
随着电动汽车的快速发展,对于动力电池的需求也就越来越高,而锂离子动力电池是目前应用最多的动力电池。文章就现在电动汽车上广泛应用的锂离子动力电池进行研究,首先介绍了锂离子动力电池的发展过程以及优势。其次就目前电动汽车市场上应用最普遍的磷酸铁锂电池、三元锂电池工作原理、性能特点以及发展现状进行介绍。最后就锂离子电池的发展趋势进行总结与分析。  相似文献   

3.
车用锂离子电池低温特性与加热方法研究进展   总被引:1,自引:0,他引:1  
鉴于低温条件下动力电池功率特性变差,充放电效率下降,制约了电动汽车的发展,一方面通过对不同规格、不同材料体系的动力电池进行低温放电、充电、交流阻抗谱特性测试,分析制约锂离子动力电池低温性能的关键因素;另一方面,从动力电池热管理角度出发,对目前低温加热技术的研究进展进行综述,旨在为改善动力电池低温性能和对动力电池低温热管理技术的进一步研究提供指导。  相似文献   

4.
钛酸锂材料的尖晶石结构以及锂离子在脱嵌过程结构的“零应变”特性使得其相对其他传统锂离子电池负极材料而言具有更加稳定的结构、更长循环寿命以及更好的大电流充放电能力。因此,钛酸锂电池是一种比较理想的动力型锂离子电池负极材料,这里综述了钛酸锂材料的合成、改性研究进展以及目前国内外的应用情况。  相似文献   

5.
以纳米Li Fe PO4锂离子电池为研究对象,在50~450 A和-18~50℃范围内,对其充放电特性、Peukert模型与温度的关系进行了讨论,利用Ragone曲线对阀控式密封铅酸动力电池、镍氢动力电池及锰酸锂离子电池的能量功率特性进行了对比分析。研究表明,该纳米Li Fe PO4锂离子电池的快速放电能力和能量功率特性都得到很大改善,尤其适合于高温工况;低温性能依然还是纳米Li Fe PO4锂离子电池的弱点,亟待进一步提高。  相似文献   

6.
以电动汽车用方形磷酸铁锂电池为研究对象,通过分析恒流放电过程中有/无高导热石墨片的电池单体表面以及电池模块不同位置间温差的变化情况,研究了高导热石墨片对提高锂离子电池温度均匀性的作用。试验结果表明,高导热石墨片作为强化传热措施,能够有效提高电池单体表面以及电池模块内部的热均匀性,进而提高电动汽车用动力电池热管理系统的性能。  相似文献   

7.
俞会根  向晋  盛军  王恒  李宁  赵亮 《汽车电器》2014,(12):25-28
电动汽车轻量化是现阶段研究的一个重要课题,针对电动汽车低压蓄电池的轻量化课题,探讨锂离子电池应用的可行性。以北汽新能源某一型号纯电动轿车作为研究对象,同时将12 V/30 Ah锂离子蓄电池和12 V/60 Ah铅酸蓄电池的性能进行对比分析,试验结果表明锂离子蓄电池样品可以满足电动汽车的低压用电需求,并且其充放电性能,特别是低温充放电性能要优于铅酸电池。此外,锂离子蓄电池样品的质量较铅酸电池有大幅降低,这对于电动汽车的轻量化设计具有一定的参考价值和指导意义。  相似文献   

8.
引言:上一期文章中,我们分析了动力锂电池安全隐患的来源,并且阐述了星恒公司为提高动力锂离子电池的安全性而在正极材料研究方面所做出的努力,即发明了以改性的尖晶石锰酸锂(LiMn204~*)。这种改性锰酸锂具有优异的循环性能,高倍率充放电性能以及良好的热稳定性能,非常适合在动力型大容量锂离子电池中应用。  相似文献   

9.
从材料层面对车用动力电池当前和未来的主流技术路线进行了比较与分析。针对正极材料,基于对三元正极和磷酸铁锂正极材料的性能和市场应用情况的比较,预测未来正极材料的发展方向。针对负极材料,由于传统的碳类负极性能提升空间十分有限,研发高容量类硅负极正在成为各大电池材料和电芯厂商的关注方向。  相似文献   

10.
纯电动汽车的续驶里程和动力电池的充放电特性密切相关,动力电池的充放电特性与环境温度又密切相关。文章通过试验给出单体电池在不同温度下的充放电特性,从等效计算和实际测试分别对纯电动汽车在室温和-20℃条件下的续驶里程进行分析研究。  相似文献   

11.
由动力电池提供动力的电动汽车在当今的汽车工业中逐渐成为重要的一部分,在目前的电动汽车构造中有多种不同类型的电池。文章首先对动力电池的发展过程进行概述,动力电池伴随电动汽车发展起来,并随着工业的进展而衰落、崛起,到如今其性能不断完善优化。目前市场上使用得较普遍的有铅酸蓄电池、镍氢电池、锂离子电池。文章针对这3种电池的工作原理、性能特征及应用现状和发展前景进行介绍。综合动力电池的各类特性,最后总结出目前锂离子电池最具发展前景,但其安全性能和快速充电性能有待进一步的技术突破。  相似文献   

12.
锂离子动力电池系统热失控扩展是造成电动汽车火灾事故的主要原因之一,文章以由圆柱形锂离子电池构成的动力电池系统为试验对象,采用加热触发单个电芯热失控的方式,通过采集电芯和模组的电压、温度等特征参数,对电芯热失控及在模组和系统范围内热扩展特性进行分析与研究。试验结果表明,电芯热失控诱发热扩展过程较为短暂,约5 s引发第二节电芯热失控;热失控发生前,触发电芯的负极采样温度高于正极,且负极温变速率平稳;热失控发生后,受正极喷射火焰影响,与之直接串接模组存在更高风险,在热扩展中受影响最大。  相似文献   

13.
动力电池作为纯电动汽车的唯一能量源,其性能直接影响整车性能.动力电池性能易受温度影响,尤其在低温环境下电池充放电能力受限,进而造成纯电动汽车里程衰减.本文以某纯电动汽车为研究对象进行常温及-7℃低温CLTC工况试验,分析常温及低温整车能量管理策略,从整车开发层面提出降低纯电动汽车低温里程衰减的措施及建议.  相似文献   

14.
分析了3台自主研发的纯电动车动力电池系统可靠性性能,其城郊工况共累计行驶96000 km,累计充放电循环1200余次.经过等速60 km/h续驶里程试验标定,结果表明,电动车的电池容量大小对电池使用寿命有一定影响,其中50Ah动力电池容量衰减较小,按此性能进行评估,基本满足电动汽车使用寿命设计目标(l00000 km)...  相似文献   

15.
<正>新能源汽车动力电池是新能源汽车的核心部件,堪称新能源汽车的心脏。动力电池的日常维护质量将直接影响汽车的技术状况和使用寿命。在当前商业化应用的动力电池中,锂离子电池具有比能量高,循环寿命长,自放率低,使用温度范围宽,无记忆效应,对环境无污染等优势,最被市场看好。1汽车锂离子电池及锂离子电池组锂离子电池是一种充电电池,它主要依靠锂离子在正极和负极之间通过电解质进行移动实现充电和放电。根据  相似文献   

16.
史瑞祥 《汽车电器》2013,(12):51-53
在大量试验的基础上,对电动汽车动力电池安全性试验中锂离子动力电池存在的问题进行详细的分析研究,并提出相应的改进建议.  相似文献   

17.
针对新能源汽车用锂离子动力电池在车载复杂工况下,由于老化过程造成整车性能下降以及产生安全隐患的问题开展研究。分析锂离子电池老化机理,研究老化路径对衰减过程的影响;对当前常用的电池模型方法进行了总结,并着重介绍了动力电池电化学- 热- 机耦合仿真模型;分析了实际应用下锂离子电池伴随老化过程可能出现的风险,归纳了主要容量衰退分析方法。研究表明,基于动力电池云端控制的故障预警方案将是动力电池整车应用未来的发展方向。  相似文献   

18.
为验证热管理正常工作条件下大倍率放电对动力电池的影响,在电池最佳工作温度范围,对动力电池进行高倍率充放电循环试验,分析脉冲功率控制失效对电性能及安全的影响。试验结果表明:循环测试500周后,动力电池容量出现30%衰减,在40%SOC(State of Charge,荷电状态)附近直流内阻DCR(Direct Current Internal Resistance,直流内阻)增加约8%是容量降低的直接原因,负极SEI(SolidElectrolyteInterface,固体电解质界面)膜老化及电解液浓度增加是主要机理;同时负极出现析锂,存在安全隐患,正极极片状态正常,分析与电池最佳工作温度控制有关。  相似文献   

19.
电动汽车的普及对动力电池相关的技术提出了更高的要求,使电池保持在合适温度区间工作的动力电池热管理 系统已经成为各大厂商的核心技术需求。由于锂离子电池在冬季低温环境下性能下降、寿命衰减尤为明显,低温热管理 技术更是近年来动力电池研究的重点。从锂离子电池在低温环境中的性能劣化机理出发,对低温热管理系统的发展现状 进行了综述,并结合最新研究进展,归纳了一套电动汽车低温热管理评价方法。  相似文献   

20.
合理的电池管理系统控制方法能够有效地将动力电池控制在最优工作区间,对于保障动力电池的电性能、一致性、安全性和使用寿命具有重要作用。根据某款纯电动汽车的具体要求,研究制定了动力电池管理系统的控制方法。软件仿真、CFD仿真和动力电池循环寿命的仿真结果表明,所提出的电池管理系统控制方法能够保证动力电池充放电性能,提高动力电池的寿命和安全稳定性,总体可行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号