首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
分析了某轻型载货汽车理想制动压力分配和制动力调节装置调压特性,提出了在轻型货车上安装制动力调节装置的匹配方法,即通过感应载荷的变化自动调节前、后轴制动力分配比例,可使其接近理想制动力分配曲线.对车辆匹配制动力调节装置前、后的制动性能进行了理论计算与道路试验,结果表明,匹配制动力调节装置可使该轻型货车的制动性能明显提高,制动稳定性和安全性得到改善.  相似文献   

2.
车辆主动制动控制利用左、右轮制动力的不同来控制车辆的横摆力矩,利用所有车轮的总制动力来控制车辆减速度,可以改善车辆的稳定性和循迹性能。文中分析了基于主动制动的车辆的临界极限转弯性能以及控制横摆力矩和减速度、对每个车轮施加制动力的作用和效果。  相似文献   

3.
针对半挂汽车列车制动时轴荷转移大、制动距离受载荷影响大的问题,提出了非紧急制动工况基于动态轴荷的制动力分配算法。根据轴荷变化动态调整制动力分配,使各轴利用附着系数与车辆制动强度一致,同时根据车辆实际制动强度与理想制动强度差值调整制动力,使车辆在相同制动过程中制动距离不受载荷影响。对比通过软件进行常规制动与采用该算法的电控系统车辆在不同载荷下的制动仿真结果表明,该算法可动态分配制动力并进行减速度控制。  相似文献   

4.
轮胎与地面间的附着系数是影响车辆安全性能的重要因素.在理论分析的基础上,提出了基于线控制动的路面附着系数检测方法.利用踏板位置传感器估计制动器制动力,采用MMA6260Q加速度传感器检测车辆制动减速度,由制动器制动力与地面制动力判断轮胎运动状态,根据车辆载荷转移公式得到车轮法向载荷,获得进入滑动区域的利用附着系数,并由此得到地面附着系数.分析显示,该检测方法可以较准确地识别轮胎与地面附着系数,具有一定的实用价值.  相似文献   

5.
载货汽车在满载和空载的不同工况下,载荷的差别较大,而汽车制动力在前、后轴之间的分配是随载荷、车轮和路面之间的附着系数等因素而变化的,因此对制动力分配系数恒定的制动系,如JN1150/100(JN150)、JN1171/127(JN162)、EQ1090E(EQ140)等车,在不同的载荷下要都获得理想的制动是不可能的。  相似文献   

6.
车辆在一定的轮胎—路面状态下制动时的稳定性主要决定于各轴间制动力的分配。对于汽车列车,它还决定于牵引车和挂车之间制动力作用时间的协调。过去,不少研究人员已经注意到了由于种种原因所引起的同一轴上左右两边车轮制动力矩的不平衡及其对制动稳定性的影响。参考文献[1]认为制动时左右车轮不同的热效应会引起它们的制动器热衰退的变化,从而使得左右车轮制动力矩不相等。但大多数研究者则把左右车轮制动力矩看成是始终相等的。事实上,制动力矩是受很多因素影响的,而且几乎所有这些因素都是随机变化的。本文主要研究如何由数字电子计算机建立一定概率分布的随机数据来模拟左右车轮的随机制动力矩,并分析它们对一个五轴半挂车汽车列车在制动加转向工况下横向稳定性的影响。  相似文献   

7.
为了研究四轮毂电机驱动电动汽车电机功率在各轴之间的匹配与回收能量多少之间的关系,采用理论分析和仿真相结合的方法,对不同匹配方案下的能量回收效果进行了对比分析。基于相关标准要求,确定了整车和动力性参数,计算整车额定功率、峰值需求功率和轮毂电机额定转速、峰值转速等,并建立了整车需求功率的二次再分模型。该模型对整车需求功率先在前/后轴之间按一定比例分配,再将各轴需求功率在左右车轮间平均分配。通过对整车制动动力学的分析,对前/后轴制动力按照理想制动力分配策略的情况,提出了电机功率在各轴之间匹配的推荐方案。基于Matlab/Simulink和CarSim软件搭建四轮毂电机驱动电动汽车联合仿真模型,采用分层取样得到多个前/后轴轮毂电机功率分配方案,研究在理想制动力分配策略下,制动强度分别为0.1,0.2和0.3,以及新欧洲运行循环(NEDC)、中国城市乘用车工况(CCDC)和纽约城市运行循环(NYCC)3种典型循环工况下不同分配方案时制动回收能量的差异,得到前/后轴轮毂电机功率最优匹配,并对最优方案动力性进行了验证。理论和仿真结果表明:当前/后轴轮毂电机功率分配比与前/后轴静态垂直载荷比相近时,电动汽车将获得最好的能量回收效果。  相似文献   

8.
针对汽车复杂行驶工况下的稳定性问题,提出了基于同侧车轮制动力优化分配的汽车稳定性控制方法。整体控制分为上层横摆力矩控制与下层制动力优化分配两部分,上层横摆力矩控制以跟踪参考横摆响应为目标,输出保持车辆横向稳定性的修正横摆力矩;下层制动力优化分配采用最优化分配算法计算需要施加在各制动车轮上的制动力,实现上层横摆力矩控制器输出的修正横摆力矩。利用MATLAB/Simulink与Carsim联合仿真验证控制效果,结果表明,基于同侧车轮制动力优化分配的汽车稳定性控制在多种复杂运行工况下均能较好地跟踪汽车参考横摆响应,减小质心侧偏角,改善汽车的操纵稳定性。  相似文献   

9.
在进口的某些汽车的制动系中,有一种调节前后轮制动力的装置,称为感载比例阀。其作用是根据后轴负荷及重量转移所造成的后钢板弹簧的变形量以控制向后制动分泵的输出气(油)压,使前、后制动力之比能接近前、后轮附着重量之比,从而改善汽车的制动稳定性,避免和减少甩尾现象。  相似文献   

10.
摩托车制动器应在安全可靠的条件下制动效能达到最大,使车辆能够最大限度地产生制动力。车辆制动时,只有在车轮与地面即将产生滑移前制动效能才最大,  相似文献   

11.
黄金鹏 《北京汽车》2012,(1):31-32,46
汽车在制动过程中,为保证汽车具有足够的制动强度,ECE-R13对制动强度与道路附着系数关系提出了明确规定,汽车制动力分配系数选择应在此规定范围内。汽车前、后轴车轮分别抱死为汽车制动强度达到极限值的下临界值,将计算得到的抱死状态时的制动强度与附着系数函数图与规定图线相比较,就可以快速得到制动力分配比的取值范围。  相似文献   

12.
丰田小货车以及工具车上装用的液压感载比例阀,是一种构造简单、维修方便的制动稳定装置。本文主要谈谈它的构造与调整,以利于其推广和使用。一、构造与原理车辆制动时,在惯性力的作用下,前、后轴的垂直载荷将发生很大的变化,即前轴负荷变大,后轴负荷变小。制动愈是剧烈,这种现象愈是严重。此时,如前、后轮制动器的制动压力不能随前、后轴载荷的变化与按比例地分配,则后轮将由于垂直载荷的减小而使其与地面的附着力降低(前轮与之相反),从而后轮首先抱死。在侧向力的作用下,车辆可能发生危  相似文献   

13.
《汽车与安全》2010,(12):17-19
ABS(Anti-lock BrakingSystem)防抱死制动系统,通过安装在车轮上的传感器发出车轮将被抱死的信号,控制器指令调节器降低该车轮制动缸的油压,减小制动力矩,经一定时间后,再恢复原有的油压,不断的这样循环(每秒可达5-10次),始终使车轮处于转动状态而又有最大的制动力矩。没有安装ABS的汽车,在行驶中如果用力踩下制动踏板,车轮转速会急速降低,当制动力超过车轮与地面的摩擦力时,车轮就会被抱死,完全抱死的车轮会使轮胎与地面的摩擦力下降。如果前轮被抱死,驾驶员就无法控制车辆的行驶方向;如果后轮被抱死,就极容易出现侧滑现象。装有ABS的车辆在遇到积雪、冰冻或雨天等打滑路面时,可放心的操纵方向盘,进行制动。它不仅有效的防止了事故的发生,还能减少对轮胎的摩损,但它并不能使汽车缩短制动距离,在某些情况下反而会有所增加。  相似文献   

14.
冰雪路面行车特点遇有冰雪路面,车辆在行驶中最重要的是车辆制动问题。按照国家规定的正常标准,4个车轮的制动力要相等,如果制动力不等,车辆就很容易跑偏。而造成车辆侧滑、跑偏的致命因素就是制动力不均衡。因此,在对车辆进行换季保养时,应特别注重调整车轮的制动装置。  相似文献   

15.
《世界汽车》2015,(3):102-103
主动安全方面1,ABS(防抱死制动系统):能独立控制每个车轮的制动力,使车辆在紧急制动时仍具有转向操控能力,可有效避免紧急制动时车轮抱死引起的转向不足、甩尾、侧滑等危险情况的发生。2,EBD(电子制动力分配系统):在车辆作常规制动时,通过建立合理的制动压力来避免后轮过度制动,并且根据道路的变化不断对制动力进行优化调整,从而保证制动系统既能发挥最大的制动效果,又能避免制动力过大导致后  相似文献   

16.
新车型在开发过程中需要通过车辆测试试验,以评价制动系统匹配是否达到最佳状态。文中阐述了汽车车轮扭矩试验,进行制动系统校验和优化,重点分析前、后轴附着系数利用率及应用方法。车辆从初始设计状态到最佳设计状态,需要进行车轮扭矩试验并校验分析,通过分析测试数据进行系统优化,使系统匹配更加合理,用户获得更好的驾车体验。  相似文献   

17.
当前,无论在军用汽车还是在民用车辆上,大量使用了ABS技术,可是在汽车防抱死制动系统出现之前,汽车所用的都是开环制动系统。其特点是制动器制动力矩的大小仅与驾驶员的操纵力、制动力的分配调节以及制动器的尺寸和型式有关。由于没有车轮运动状态的反馈信号,无法测知制动过程中车轮的速度和抱死情况,汽车就不可能据此调节轮缸或气室制动压力的大小。因此在紧急制动时,不可避免地出现车轮在地面上抱死拖滑的现象。当车轮抱死时,地面的侧向附着性能很差,所能提供的侧向附着力很小,汽车在受到任何微小外力的作用下就会出现方向失稳的问题,极易发生交通事故。在潮湿路面或冰雪路面上制动时,这种方向失稳的现象会更加严重。汽车防抱死制动系统ABS的出现,从根本上解决了汽车在制动过程中的车轮抱死问题,可使汽车在制动时维持方向稳定性和缩短制动距离,有效提高行车的安全性。  相似文献   

18.
汽车制动力的检验是汽车安全性能检测中的重要内容。通过制动力的检测不仅可以测得各制动力的大小,还可以了解汽车前、后轴制动力合理分配,以及两侧车轮制动力平衡状况。由制动试验台测量制动力,在汽车综合性能检测站中已广泛采用。但是,面对检测结果,一些客户甚至检测人员由于  相似文献   

19.
建立了基于恒速制动车辆纵向力平衡方程、制动器耗散功率及其温度变化微分方程、管路压力调节等子模型的恒速长下坡汽车制动器摩擦性能分析系统.以两轴中型汽车为例,对前后制动器在不同挡位发动机制动时的温度、制动副摩擦因数、制动力分配及管路压力变化进行了计算.结果表明,在不影响车速情况下,合理使用各挡发动机制动可改善汽车前、后制动器热负荷,减小或避免制动摩擦力矩热衰退,保证汽车下长坡安全行驶.  相似文献   

20.
张国辉 《汽车与配件》1990,(7):16-19,32
行驶中车辆制动时的理想工况是前、后各车轮能达到同步制动,即全部车轮同时抱死,使车辆的总制动力F_f和减速度a达到其最大值,制动距离最短,制动因数Z高.但F_f和a值系随轮胎——道路的附着系数Φ值而变,实际上无法找到一个能满足可在各种不同路面上,使全部车轮皆能实现同步抱死的理想方案.然而也确实存在着一种有一定  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号