首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
为了提高四轮独立驱动智能电动汽车在变曲率弯道下的轨迹跟踪精度和横摆稳定性,提出了一种模型预测控制与直接横摆力矩控制协同的综合控制方法。建立了横纵向耦合的车辆动力学模型,采用2阶龙格库塔离散法保证了离散模型的精度,并基于简化的2自由度动力学模型推导了车辆横摆稳定性约束,设计了非线性模型预测控制器;利用直接横摆力矩控制能够改变车辆横摆角速度和航向角的特点,考虑模型预测控制器的预测状态、控制量以及跟踪误差,设计了协同控制规则。仿真结果表明,协同控制方法解决了考虑横摆稳定性约束的模型预测控制器中存在的稳定性约束与控制精度相矛盾的问题,并补偿了模型预测控制器没有可行解时对横摆稳定性的约束,同时提高了智能汽车的轨迹跟踪精度和横摆稳定性。  相似文献   

2.
方培俊  蔡英凤  陈龙  廉玉波  王海  钟益林  孙晓强 《汽车工程》2022,(10):1469-1483+1510
基于机理分析的车辆动力学建模过程通常进行简化及假设,无法准确计算实际车辆在不同道路条件下的动力学变化,进而导致智能汽车轨迹跟踪控制精度低、不稳定等问题。鉴于此,本文中提出了一种基于混合建模技术的非线性建模与控制方法,构建机理分析-数据驱动的车辆动力学串联混合模型,车辆状态与控制数据经机理模型实现计算处理,级联合并后作为数据驱动模块的输入,长短时记忆网络作为主干网络实现时序数据的非线性关联特征提取和最终的模型输出计算。测试结果表明,该模型可以补充计算机理模型中的部分未建模动态并提高模型计算精度,且具有隐式理解不同路面附着条件的能力。其次,使用Euler积分完成对预测模型的离散化并设计模型预测控制轨迹跟踪算法,设计前馈反馈控制算法在实现车辆的纵向控制的同时提供横向控制中预测模型所需的外部输入,最终实现更符合实际行驶环境且更精准的轨迹跟踪控制效果。CarSim/Simulink联合仿真结果表明,该方法实现了不同道路附着系数下控制量精确输出,同步提升了智能汽车轨迹跟踪控制精度和稳定性,具有良好的横纵向协调控制效果。  相似文献   

3.
针对现有智能汽车路径跟踪算法研究中存在的智能汽车路径跟踪精度与操纵稳定性相互耦合和相互制约问题,在车辆二自由度模型基础上,设计了基于传统预瞄误差模型的PID控制方法,研究了智能汽车在蛇形道路工况、定曲率变车速工况和定车速变曲率工况下,车速及道路曲率对智能汽车路径跟踪精度和操纵稳定性的影响。仿真结果表明,随着车速和道路曲率的增加,智能汽车路径跟踪精度以及操纵稳定性降低;智能汽车的路径跟踪精度提高,操纵稳定性变差。  相似文献   

4.
为提高智能电动汽车(IEV)轨迹跟踪精度和稳定性,提出了一种考虑前馈控制和转角补偿的线性二次调节器 (LQR) —双比例-积分-微分 (PID)横纵向协同控制方法.设计了LQR横向控制器、前轮转角补偿控制、纵向双PID控制器,得到驱动或制动力输出到车辆模型.在Carsim和Matlab/Simulink环境下搭建了系统...  相似文献   

5.
李松 《汽车文摘》2023,(9):19-27
轨迹跟踪和控制技术一直是智能汽车研究的热点。通过3个基本的建模方法,即几何动力学、运动学、动力学,将智能车辆轨迹跟踪控制算法进行分类,详细阐述了各种算法的原理、研究现状和优缺点,在此基础上继续讨论了轨迹跟踪算法的改进优化方向以及改进方向研究现状。结果表明,单一的控制方法不能满足智能汽车实际场景的操作需求,未来智能汽车的发展趋向于多种智能控制算法整合解决单一控制算法缺点。  相似文献   

6.
针对外界扰动、参数摄动、数据传输时滞、转向输出滞后等因素给车辆运动控制带来的严峻挑战,基于鲁棒保性能控制理论提出了一种面向不可靠车载传输环境的智能汽车轨迹跟踪控制策略。通过系统扩维的方式引入转向系统动力学,建立增广无滞后不确定轨迹跟踪动力学模型,以描述执行器动态特性影响下的车路耦合动力学响应。基于Lyapunov-Krasovskii(LK)泛函构建时滞相关稳定性判据,考虑模型参数摄动所引起的系统失配问题,采用不等式放大法对不确定交叉项进行放大,引入H指标对广义外界扰动进行抑制,并通过保性能指标配置控制性能偏好,设计具备线性参数时变(Linear-parameter-varying, LPV)特征的纵横向鲁棒协同控制器。最后通过多个典型工况对鲁棒保性能控制策略的有效性与优越性进行了验证。研究结果表明:在信号传输存在时滞、转向输出存在滞后的状态下,所提出的控制策略能够产生光滑平顺的控制输出,可保证车辆的行驶稳定性;尤其是在低附着、高速转向等恶劣行驶工况下,所提出的鲁棒保性能控制策略能够有效补偿模型失配所带来的不利影响,实现轨迹精确跟踪与横向稳定控制的有效兼顾。因此...  相似文献   

7.
针对中国大学生方程式赛车(FSAC)在比赛中横向-纵向协同控制的轨迹跟踪精度和稳定性问题,根据现代控制理论和经典控制理论提出一种以纵向速度为结合点的线性二次控制器(LQR)和比例-积分-微分算法(PID)的横纵向协同控制策略,并根据赛车相对参考轨迹的位置设计了一种协同控制器。建立二自由度车辆动力学模型,基于该模型设计了横向LQR位置跟踪控制器和纵向PID速度跟踪控制器。所设计的控制策略在CarSim和Simulink搭建的循迹工况联合仿真场景下进行仿真验证,仿真结果为纵向位置偏差小于0.07 m,横向位置偏差小于0.03 m。对控制算法进行实车验证,结果表明,该策略有效提高了赛车的轨迹跟踪精度和行驶稳定性。  相似文献   

8.
以四轮转向汽车为研究对象,建立车辆四轮转向动力学模型。基于后轮主动转向控制方法,分别搭建四轮转向汽车前后轮转角成比例的主动转向控制模型以及基于车速和横摆角速度反馈的主动转向控制模型。在高速转向工况下,采用MATLAB/Simulink建立四轮转向汽车主动转向控制仿真模型进行对比仿真。仿真结果表明,该控制方法能够较好地减小车辆质心侧偏角及横摆角速度,保证车辆良好的轨迹跟踪能力,有效地改善了车辆的操纵稳定性。  相似文献   

9.
徐兴  汤赵  王峰  陈龙 《中国公路学报》2019,32(12):36-45
为了提高分布式无人车轨迹跟踪的精度,提出了基于自主与差动协调转向控制的轨迹跟踪方法。首先,在车辆三自由度模型基础上,基于模型预测控制(MPC)实时计算前轮转角以控制车辆进行自主转向轨迹跟踪。在此过程中,为了提高自主转向下车辆的轨迹跟踪精度与行驶的稳定性,考虑多种因素,利用经验公式及神经网络控制对MPC的预瞄步数和预瞄步长进行多参数调整,实现预瞄时间的自适应控制。其次,在恒转矩需求的情况下,以轨迹偏差为PID控制器的输入及左右轮毂电机转矩为输出进行差动转向控制,实现了差动转向下的轨迹跟踪控制。然后,通过设置权重系数的方法将自主与差动转向相结合。考虑到车辆横纵向动力学因素,采用模糊控制及经验公式对权重系数进行了调整,从而在提高车辆转向灵活性与轨迹跟踪效果的同时保证车辆行驶的稳定性。CarSim与Simulink联合仿真以及实车试验结果表明:与自主转向轨迹跟踪相比,采用变权重系数的协调控制可以在不同的工况下提高车辆的转向灵活性与轨迹跟踪的精度,轨迹跟踪偏差的均方根值改善率达到了11%。所提出的协调转向控制方法可为分布式驱动车辆转向灵活性的提高及轨迹跟踪精度的改善提供一种新的思路。  相似文献   

10.
王宏伟  刘晨宇  李磊  张昊天 《汽车工程》2022,(10):1494-1502+1618
本文针对无人车在复杂工况下,非线性程度增加和动力学约束导致的轨迹跟踪控制精度差和求解效率低的问题,提出一种高效的非线性模型预测控制(nonlinear model predictive control,NMPC)算法。首先考虑车辆模型的非线性因素,建立动力学和魔术轮胎模型,并将无人车终端状态整合到性能指标中,添加稳定性范围内多约束条件,通过障碍罚函数法处理非线性不等式约束,保证了求解过程的平滑性。然后为减轻求解非线性优化问题带来的计算负担,提出了一种新颖的连续/广义最小残差算法(improved continuation/generalized minimal residual,improved-C/GMRES),与传统的C/GMRES算法相比,通过引入连续增加的惩罚因子加快了数值计算的求解效率,降低算法的计算负担。最后通过Simulink和CarSim的联合仿真,在双移线工况和蛇行工况条件下验证跟踪精度和求解效率,结果表明与传统的C/GMRES方法相比,所提控制方法明显提升轨迹跟踪的控制精度和改善行驶稳定性,并加快数值求解效率。  相似文献   

11.
当路面附着情况和车辆行驶状态不断变化时,基于恒定侧偏刚度的模型预测控制(MPC)不能考虑轮胎非线性特性的影响,难以保证车辆轨迹跟踪的适应性。为此,提出一种考虑轮胎侧向力计算误差的自适应模型预测控制(AMPC),以提高智能汽车在不确定工况下的轨迹跟踪性能。分析了路面附着系数和垂向载荷对轮胎侧向力的影响,基于平方根容积卡尔曼滤波(SCKF)算法,设计了利用侧向加速度和横摆角速度作为测量变量的前后轮胎侧向力估计器。利用轮胎侧向力线性计算值与估计值的差值计算得到侧偏刚度修正因子,设计了前后轮胎侧偏刚度的自适应修正准则,进而提出了一种基于时变修正刚度的AMPC控制方法。基于CarSim与MATLAB/Simulink联合仿真和硬件在环测试平台,对AMPC控制的有效性和实时性进行了验证。研究结果表明:在不同的路面附着情况和车辆行驶状态下,AMPC控制都能够降低横向位置偏差和航向角偏差,有效提高车辆的轨迹跟踪精度,其控制效果明显优于基于恒定侧偏刚度的标准MPC控制。尤其在低附着工况下,标准MPC控制会因为线性轮胎力的计算误差过大而导致车辆在轨迹跟踪时严重失稳,而AMPC控制通过估计轮胎力修正侧偏刚度依然能够保证车辆稳定有效的跟踪参考轨迹。所提出的AMPC控制在保证控制精度的同时具有良好的实时性,对智能汽车控制系统的设计与优化具有重要参考价值。  相似文献   

12.
分布式驱动电动汽车可以实现四轮转矩分配和差动转向,提升整车的动力学控制性能和经济性,但是四轮转矩独立可控的特点也对功能安全提出挑战.当前轮单侧电机出现执行器故障失效情况时,不仅会产生附加横摆力矩降低车辆安全性,差动转向功能的存在还会使车辆严重偏航.基于此,在设计分布式驱动-线控转向一体化底盘的基础上,基于功能安全提出一...  相似文献   

13.
轮式装载机在工作区域行驶时,避障过程频繁,以往的避障轨迹规划未考虑整车转向半径约束和车速变化,也较少考虑整车在动力学模型条件下的轨迹跟踪性能.针对上述情况,以自动驾驶轮式装载机为对象,基于最优快速随机扩展树算法(RRT*),考虑车身膨胀圆个数,生成全局最优避障路径,以整车最小稳定转向半径为约束,利用CC-Steer算法...  相似文献   

14.
This paper describes a drive controller designed to improve the lateral vehicle stability and maneuverability of a 6-wheel drive / 6-wheel steering (6WD/6WS) vehicle. The drive controller consists of upper and lower level controllers. The upper level controller is based on sliding control theory and determines both front and middle steering angle, additional net yaw moment, and longitudinal net force according to the reference velocity and steering angle of a manual drive, remotely controlled, autonomous controller. The lower level controller takes the desired longitudinal net force, yaw moment, and tire force information as inputs and determines the additional front steering angle and distributed longitudinal tire force on each wheel. This controller is based on optimal distribution control and takes into consideration the friction circle related to the vertical tire force and friction coefficient acting on the road and tire. Distributed longitudinal/lateral tire forces are determined as proportion to the size of the friction circle according to changes in driving conditions. The response of the 6WD/6WS vehicle implemented with this drive controller has been evaluated via computer simulations conducted using the Matlab/Simulink dynamic model. Computer simulations of an open loop under turning conditions and a closed-loop driver model subjected to double lane change have been conducted to demonstrate the improved performance of the proposed drive controller over that of a conventional DYC.  相似文献   

15.
针对分布式驱动车辆转向工况在低速下期望提高转向机动性能,高速下期望保证行驶稳定性的需求,充分考虑转向行驶内外侧车轮的转向关系以及车辆动力学,制定了适应车速变化的四轮转矩分配策略,建立了四轮轮毂电机驱动模型以及二自由度参考模型。为了改善分布式驱动转向机动性能,建立自抗扰控制器调整内外侧车轮转矩,形成合理的转速差,减小转向半径,以提高转向机动性;对于高速转向行驶稳定性的需求,通过二次规划方法优化分配各车轮驱动力矩,分析轮胎纵横向附着裕度建立目标函数,并加入附加横摆力矩和路面附着力的限制,进行车轮驱动转矩的在线优化分配,提高车辆转向行驶的稳定性;另外为避免2种控制模式转换时驱动转矩突变,根据车速和稳定性参数制定模糊规则决策2种模式的协调系数,保证2种控制模式的平滑过渡。基于CarSim和MATLAB/Simulink进行联合仿真,并搭建硬件在环平台进行试验,对所提出的方法进行验证。结果表明:在低速转向工况下,提出的分配策略能够调节内外侧车轮产生差速效果,与转矩平均分配的策略相比,转向半径有所减小,提高车辆机动性;高速转向工况下,分配策略能够保证车辆稳定转向,与未考虑稳定性控制的分配策略相比,能更好地跟踪目标轨迹,且横摆角速度控制在参考横摆角速度附近,证明了所提控制策略的有效性。  相似文献   

16.
轮胎附着极限下差动制动对汽车横摆力矩的影响   总被引:20,自引:3,他引:20  
郭孔辉  丁海涛 《汽车工程》2002,24(2):101-104
本文以纵滑-侧偏联合工况的稳态轮胎模型为基础,分析了汽车极限转向条件下制动作用于不同车轮时对汽车横摆力矩的影响,并通过整车动力学仿真进行了验证,研究结果为利用差动制动控制提高汽车的高速操纵稳定性提供了动力学依据。  相似文献   

17.
基于Pacejka的"魔术公式"轮胎模型,建立了包括汽车纵向与横向移动、横摆、侧倾和4个车轮的转动的8自由度动力学模型.设计了由汽车仿真模型和驱动系统、四通道制动系统、制动踏板、转向盘与油门踏板等实物以及控制器(ESP)等部分组成的半实物仿真平台.以侧向加速度与横摆角速度为仿真控制变量对模型进行仿真测试.仿真与实车测试数据相当接近,为ESP的研究提供了有效的模型.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号