首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在分析了车身密封系统引起的车内气动噪声产生机理及影响因素的基础上,通过整车气动声学风洞试验,对某四门三厢轿车的车内气动噪声的构成成分-泄漏噪声及外形噪声的频率特性进行了分析,并通过“开窗法”调查了车身各密封部件对车内泄漏噪声的贡献.结果表明,泄漏噪声主要发生在中高频段,且对车内总噪声的贡献比外形噪声大;车门、后视镜和侧窗的密封是该轿车最重要的泄漏噪声源,但具有不同的特征频段.  相似文献   

2.
介绍了轿车风噪声的形成、影响因素及测量方法,阐述了利用封堵排除法对某车型风噪问题的分析和改善过程。以国产某三厢轿车为例进行了整车静态烟雾试验和道路试验,通过"烟雾倒吸法"在车内直观呈现出泄漏点位置,再结合"开窗法"分析各泄漏点导致的驾驶室内声压-频率特性变化,从而确定它们对车内泄漏噪声的贡献。试验结果表明,在中高频范围泄漏噪声占主导地位,且车门前三角窗位置和玻璃导槽拐角位置是该轿车主要的泄漏噪声源。  相似文献   

3.
针对日益凸显的汽车侧窗风振噪声问题,进行了汽车侧窗风振噪声特性研究。首先分析汽车风振噪声产生机理,然后对某款轿车不同侧窗完全开启时引起的风振噪声进行了实车道路试验。通过分析监测点的声压和声压级频谱特征,发现不同侧窗开启模式下汽车侧窗风振噪声特性存在差异:单一后窗开启或者两后窗同时开启情况下风振噪声具有多谐振荡的特性;其它情况下风振噪声仅有单一的风振峰值;在发生共振时,两后窗同时开启引起的风振噪声最强。本研究从CFD数值模拟流场和前后窗造型等角度揭示了不同侧窗开启风振噪声特性存在差异的原因,为侧窗风振噪声的控制奠定了基础。  相似文献   

4.
车用涡轮增压器密封结构的检测   总被引:2,自引:0,他引:2  
分析了导致增压器机油泄漏的主要原因,提出了检测涡轮增压器密封结构的3种试验方法,即密封环的高温松弛试验、增压器的静态泄漏特性试验和增压器的动态泄漏特性试验。  相似文献   

5.
客车整车密封性已经成为其行业一个非常重视的问题,且其密封性与汽车NVH性能车内噪声水平、整车能耗及空调制冷性能等密切相关。整车气体密封性能测试可以排查车身泄漏点和测量车内压力及泄漏量大小,深入探讨客车车身气密性设计和过程控制方法,通过对客车整车气密性试验结果进行研究,并以某车车内密封提升对整车噪声的影响及密封整改前后的车内温升曲线对比分析验证了整车气密性提升的重要性。  相似文献   

6.
油封在汽车上的作用非常重要,如发动机曲轴后端采用的金属骨架橡胶油封。它的作用是防止润滑油泄漏,其性能好环,会直接影响汽车的技术状况。然而有许多人对汽车油封的密封机理、装配要求和使用条件等知识了解较少,造成汽车油封的早期损环,缩短了油封的使用寿命。因此,分析油封早期损坏的原因,掌握正确的装配与使用方法。对延长油封使用寿命,进而提高汽车的使用效率和降低运输成本具有重要意义。 一、油封的密封机理  相似文献   

7.
通过分离涡模拟(DES)进行整车外流场的三维瞬态仿真,得到车身表面压力脉动,并采用FW-H声学模型对气动噪声进行仿真分析。通过与类后视镜气动噪声试验数据相比较,验证了仿真的准确性。对有、无后视镜工况下,后视镜区域瞬态流场、车身表面压力脉动、侧窗监测点声压级进行比较,揭示了后视镜区域气动噪声产生机理,为降低汽车气动噪声提供技术支持。  相似文献   

8.
汽车整车噪声源分析及降噪措施研究   总被引:6,自引:0,他引:6  
徐林玉  杨云  赵骞 《天津汽车》2003,(2):19-20,37
对汽车整车噪声贡献较大的发动机噪声、传动系噪声等噪声产生机理及噪声源识别技术进行了详尽分析,并系统论述了相应的吸声、隔振等降噪措施。  相似文献   

9.
为更加真实地模拟驾驶室内声学环境和提高驾驶室内高频噪声的预测精度,将泄漏量应用到SEA建模中,建立了考虑泄漏量的商用车SEA模型。利用伯努利方程推导等效总泄漏面积,将等效总泄漏面积按各个泄漏点的贡献量比例进行分配并添加到模型中仿真。与未考虑泄漏的SEA模型对比,结果显示仿真精度提高,误差减小了1.5 dB(A)左右,与试验结果间的绝对误差在2 dB(A)以内,满足工程上在汽车产品开发设计阶段对车内高频噪声分析预测的要求,从而验证了考虑泄漏量的SEA模型的有效性。在不同泄漏值下对驾驶室内噪声进行仿真计算,得到泄漏量对噪声值影响曲线。结合影响曲线和其他多方面因素,确定了合适的泄漏值为150 SCFM。对主要泄漏点开展有针对性的优化整改,气密性由整改前的268.5降到了149.1 SCFM。对优化整改后的驾驶室内噪声进行测量,结果显示,相比于优化前噪声值在两个工况下分别降低了1.82和1.31 dB(A)。  相似文献   

10.
轮胎噪声是汽车噪声的主要声源之一,在高速行驶时尤其如此。因此,探讨轮胎噪声的产生机理从而找出控制噪声的有效途径是十分必要的。 一、轮胎噪声的形成机理 轮胎噪声按照其性质不同主要可分为空气噪声、振动噪声及振鸣噪声。不同性质的轮胎噪声,其产生机理各不相同,在大多数情况下,这些机理是同时存在的,只是形成噪声能量的大小和对轮胎总噪声的贡献主次不同。 1.空气噪声 空气噪声主要是指空气在轮胎花  相似文献   

11.
孙志洪  王宁 《隧道建设》2020,40(3):346-351
针对盾构盾尾密封系统容易发生漏水、漏浆等危险的问题,将光纤光栅压力监测系统布设于盾尾尾刷密封性能试验台,对油 脂腔进行多点连续压力测量,并在油脂腔不同压力等级条件下采用人为打开球阀泄放的方式模拟实际工况产生的泄漏。试验表 明: 1)当油脂腔某点发生泄漏时,整个油脂腔圆周方向上同时产生缓慢压降,缓慢压降时间最长可达6 min,最大压降可达0. 075 MPa; 2)基于光纤光栅传感的盾尾油脂腔多点连续压力监测能够较为准确地监测油脂腔在泄漏试验过程中所发生的压力变化。该 监测方法为盾尾密封系统泄漏预警提供可行的解决方案。  相似文献   

12.
介绍缸体干式密封检测机工作流程与检测原理,对密封检测仪泄漏报警原因进行分析,并设计制作各种密封堵头以及制定泄漏判定标准流程,指导维修人员快速、准确判断密封检测机的泄漏排查工作。  相似文献   

13.
针对分体式车身的结构特点,介绍了分体式车身风窗玻璃安装密封结构、车门总成密封结构、车门门口密封结构、前风窗与前围和顶盖连接密封结构及顶盖与后侧围密封结构的设计方案,并通过淋雨试验验证了设计方案的可行性。  相似文献   

14.
<正> 用户对曲轴密封的主要兴趣是:在给定的使用条件下密封的特性和它的最佳工作寿命。而径向密封制造厂本身必须对机体轴承孔、轴密封部分的光洁度以及润滑和配合条件提出一定的要求。当径向密封发展成为一种标准机器元件时,在运动轴密封的整个领域都进行了研究和试验工作,并且形成了大量的出版物。本文仅讨论为了制成柔性更大的悬置密封唇,在密封唇设计方面进行的变化的影响,以及关于具有不同阻尼性能的材料在高速汽车发动机曲轴上的密封效果和使用寿命方面的新知识。  相似文献   

15.
本文通过对汽车液压零部件定量气密性检测的机理分析,提出了极限泄漏率的概念,用来判定工件密封性能的好坏。建立了密封容积的微泄漏模型,并分析了微泄漏的特点,确定了以压差法为检测汽车零部件密封性能的基本方法,并对该方法的具体实施进行了研究。  相似文献   

16.
以某乘用车为研究对象,采用实车道路试验和仿真分析的方法,研究不同侧窗开启组合下驾驶员耳旁的风振噪声和侧窗风振噪声产生的机理,并提出在后视镜支撑臂位置开槽抑制风振噪声的措施,降噪可达7 d B。  相似文献   

17.
《公路》2015,(7)
新型拉索密封体系密封技术的主要核心技术是引入了全新的高强度铝合金气囊密封装置,将拉索与预埋钢管结合处传统的静态黏结密封改为压力密封,解决了该连接部位进水导致的腐蚀问题,大幅提高了拉索使用寿命。通过对新型拉索密封体系工作原理、特点、工艺流程及试验验证介绍,阐述了密封体系的组成、施工和密封效果。  相似文献   

18.
针对目前市场上汽车密封连接器尺寸偏大、结构复杂、价格偏高等现状,提出一种基于CIPG工艺的汽车连接器密封技术。该密封技术通过自动注胶机进行注射单组份液态硅胶,根据设计好的法兰结构,可以注出不同形状的胶条。再把注好胶的产品放入烤箱进行加热硫化成型。这样密封胶条就可以与法兰面板牢靠的粘接在一起,代替密封圈的作用实现密封防水的功能。产品经过充分的温度、湿度循环等环境试验,达到了预期效果,满足设计要求。  相似文献   

19.
随着新能源汽车行业的迅猛发展,行驶过程中发动机噪声的贡献消失,气动噪声成为了最容易引起顾客抱怨的问题。相关研究表明,通过侧窗玻璃表面脉动压力产生的湍流脉动和声场是汽车在高速行驶时的主要噪声源。基于开源软件OpenFOAM,采用SST- DDES湍流模型,分别对两款不同车型的前后侧窗玻璃24个点的表面脉动压力进行了数值模拟计算,并与风洞试验测试相结合进行验证。结果表明,仿真结果与试验结果基本吻合,证明了该方法可以有效捕捉侧窗玻璃的表面脉动压力结果,为后续的车内噪声计算打下基础,同时也有效缩短了开发周期,并降低了后期实车风洞试验的测试成本。  相似文献   

20.
汽车液压零部件定量气密性检测的研究   总被引:4,自引:0,他引:4  
通过对汽车液压零部件定量气密性检测机理的分析,提出了极限泄率的概念,用来判定工件密封性能的好坏。建立了密封容积的微泄漏模型,并分析了微泄漏的特点,确定以压关为检测汽车零部件密封性能的基本方法,并对方法的具体实施进行了研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号