首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
崔玉  毛幸全  孙得璋  王旭  李永广 《公路》2022,(6):116-122
桥梁跨径的增大会增大桥梁的柔度和风敏感性,从而加大强风作用导致桥梁结构发生振动破坏的风险。为了研究强风对大跨径桥梁的影响,使用安装在国内某跨海大桥上的三向超声风速仪,对台风“山竹”的风特性进行分析,得到了平均风、湍流强度、阵风因子和峰值因子随时距的变化趋势,最后将部分结果进行拟合,并与经验公式进行了对比。研究得出以下结论:(1)随平均风速的增大,湍流强度、阵风因子及纵向峰值因子均呈下降趋势;(2)随时距的增大,纵向湍流强度、纵向和横向阵风因子逐渐降低;(3)湍流强度增大的同时,阵风因子呈上升趋势;(4)纵向阵风因子与纵向湍流强度的总体变化趋势与Cao经验曲线吻合度较高;(5)随平均风速的增大,峰值因子逐渐降低,并与阵风因子呈正相关性;(6)纵向峰值因子与时距的变化与Durst经验曲线吻合较高。  相似文献   

2.
为研究山区桥址处的风场特性,基于西南山区某特大桥结构健康监测系统,对桥址处实测风场特性进行分析,并与规范推荐值比较。结果表明:1)大部分风速时程处于平稳状态,横向脉动风速的非平稳性高于纵向脉动风速;2)实测风速时程平均风速有跳变波动,平均风向保持平稳;3)各向湍流强度、阵风因子在低风速区段随平均风速的增大而减小,在高风速区段随平均风速的增大而趋稳;4)实测纵向阵风因子超过规范推荐值,纵向阵风因子与湍流强度具有较强的相关性,实测拟合曲线较Ishizaki推荐值偏小;5)实测功率谱值在低频区逐渐增大,在高频区逐渐减小,Von Karman经验谱能描述实测数据的脉动特性。该研究结果可为同类桥梁结构抗风设计提供依据。  相似文献   

3.
为给东南沿海地区桥梁结构抗台风设计提供依据,基于九堡大桥(钱江八桥)上安装的桥梁健康监测系统的风速风向监测子系统,对2012年台风"海葵"气候条件下风速风向数据进行了全程采集,根据实测数据对台风过程中的脉动参数(平均风速与风向、湍流度、阵风因子、湍流积分尺度、脉动风速功率谱)进行统计分析。分析结果表明:基本时距为10min时,纵向及横向脉动风速湍流度随时间的变化趋势基本一致,随平均风速的增大而减小;各向阵风因子随平均风速的增大而减小,横向与纵向阵风因子均值的比值为0.30,风速较小时,阵风因子减小速率较快,而风速较大时,减小趋势不明显;各向的湍流积分尺度均随平均风速的增大而增大;实测脉动风速谱与Von Karman谱基本符合。  相似文献   

4.
为给复杂地形下的桥梁抗风设计提供指导,以肇庆南广铁路西江大桥为工程背景,依托大桥风环境监测子系统,对桥位处风场进行了现场实测,并以该实测数据为分析样本,从平均风与脉动风两方面研究了其风场特性,同时针对大桥不同测点风速展开了空间相关性分析。实测结果表明:受地形影响,桥位处10min平均风速呈非高斯分布,湍流强度、阵风因子随高度增加呈增大趋势;湍流强度、积分尺度均大于规范推荐值,纵向脉动风功率谱在高频段与Kaimal谱吻合较好,而在低频段相差较大,跨中与拱顶实测相关系数与Davenport公式计算值均存在一定偏差;基于此类地形下的桥梁设计需考虑地形的影响。  相似文献   

5.
四渡河峡谷大桥桥位风的湍流特性实测分析   总被引:1,自引:0,他引:1  
结合位于鄂西山区的四渡河峡谷大桥的抗风设计研究,在桥位现场用超声风速仪实测脉动风速时程数据,分析山区深切峡谷风的湍流特性。基于10 min平均时距划分子样本,统计分析峡谷桥位的风速、风向、阵风因子、湍流度、积分尺度和功率谱密度函数。结果表明:该桥所在的山区深切峡谷地形导致风的湍流脉动强度明显增大,表征涡旋大小的湍流积分尺度减小;湍流度随平均风速的增大而减小,积分尺度随平均风速的增大而增大;由实测数据拟合的山区峡谷功率谱密度函数模型存在低频迟滞区,山区峡谷风的湍流特性与规范推荐模型有较大差别。  相似文献   

6.
山西禹门口黄河大桥实测风特性分析   总被引:1,自引:0,他引:1  
张玥  胡兆同 《公路》2008,(11):77-82
自然风特性研究是桥梁抗风设计的基础,但是目前国内对大气湍流特性的现场观测研究工作开展得还极少,针对这一情况,结合山西省禹门口黄河公路大桥,在桥址处建立了一座60 m和两座30 m的风观测站.利用自行编制的程序对实测风速数据进行了分析,得到了平均风速和风向、风剖面、湍流强度和阵风因子等强风特性.分析结果表明:桥位处的风场比较复杂,风剖面属于山区风速剖面,不完全遵守幂指数分布;桥位处出现28.3 m/s大风机率很大,应进行主桥最大双悬臂状态抗风安全性能的风洞试验,以确保主桥悬臂施工期间的安全;还应进行长期观测,得到更多详实资料,为掌握同类地形处的风场特性提供资料.  相似文献   

7.
西堠门大桥强风特性、位移和桥面压力实测研究   总被引:1,自引:0,他引:1  
利用现场实测方法对西堠门大桥桥址区脉动风场特性、主梁位移以及主梁断面压力等进行研究,经对实测数据的统计分析,得到平均风速、平均攻角、紊流强度、阵风因子、紊流功率谱密度等强风特性,得到了主梁实时位移和桥梁的动力特性,并通过测压方法得到主梁断面的脉动压力值及压力谱值等.  相似文献   

8.
为研究深切峡谷地形条件下的桥面局部风场,对桥梁跨中和过桥塔区局部区域风环境开展了现场实测。对局部风场特征进行了讨论分析,其中包括平均风速特征、紊流度、脉动风速功率谱和极值风速分布等。探讨了跨中和桥塔区位置风剖面分布,同时给出了跨中和桥塔区的平均风速拟合关系,量化了过桥塔区顺桥向风速分布的桥塔遮挡效应和地形加速效应,总结提出了一种典型的过桥塔区顺桥向风速曲线模型。此外,桥塔区域风速紊流度显著大于跨中位置,表明桥塔和特殊地形对局部风场存在较大影响。桥塔区脉动风速实测谱高频段能量明显上升,与惯性子区谱-5/3斜率衰减效应变化特征不符。相较于规范风谱,推荐了3阶双对数多项式,可更加准确地表征脉动风湍流能量在频域上的分布特征。对瞬态阵风极值风速的分析结果表明,相较于平均风速,极值风速用于评估行车安全更为合理。  相似文献   

9.
马如进  范爱华  徐向东  杜镔 《公路》2021,66(9):168-174
山区桥梁桥址区风场特性相比平原地区更加复杂,具有强烈的地形效应。针对某U形峡谷中三塔斜拉桥的中塔建立了高度方向的多个测点,测得了不同高度处的风速时程,通过统计分析得到桥位的平均风参数和脉动风参数及其统计规律。分析结果表明,该峡谷桥址区的平均风速剖面受地形影响大而且形式复杂,风攻角比规范推荐值大,顺、横、竖风向的湍流度比值与规范值的差异明显,湍流积分尺度、脉动风功率谱与规范相比也有所区别。  相似文献   

10.
基于自主研发的真实道路来流参数测量系统,对多地区、多场景真实道路行驶来流湍流强度进行了测试,发现车辆道路行驶时来流湍流强度远高于风洞水平,道路平均湍流强度为4%,沿海地区湍流强度最高可达20%,在跟车或超车时湍流强度可达 28%。在汽车风洞内模拟了道路行驶跟车、超车等试验场景,对测试车辆气流环境进行了采集分析。结果表明,跟车和超车时,后车来流湍流强度较高且伴随有速度损失,湍流强度及速度损失大小与前车尺寸和跟车距离有关,湍流强度分布范围为2%~33%,与道路实测相当,且速度损失最大为19%。进一步探究了前车放置角度、风洞风速对后车来流湍流强度的影响规律,建立对后车来流湍流强度定量调节的方法。完成了双车风噪测试,结果表明,风洞内高湍流强度环境车内风噪测试调制频谱结果与道路行驶测试结果相符,车内风噪频谱曲线差异主要集中在小于70 Hz的低频段。  相似文献   

11.
为从监测大数据中提取影响桥梁涡激振动的特征参数,及时预测涡激振动,以某跨海大桥为背景,对该桥2013~2015年的涡激振动监测数据进行梳理,分析风参数以及能量集中系数等结构振动响应因素在涡激振动中的特异性,根据涡激振动特征参数建立动态监控模型,并应用于该桥中。结果表明:涡激振动主要发生在顺风向平均风速为4~13m/s低风速以及300°~330°、120°~150°风向角间;竖向平均风速、风攻角、湍流度、阵风因子均不宜作为涡激振动预测分析参数;能量集中系数与加速度均方根值可作为桥梁是否发生涡激振动的进一步判断条件;涡激振动动态监控模型可及时预测涡激振动,且实际应用效果较好。  相似文献   

12.
《公路》2017,(8)
基于某公路大跨度三塔斜拉桥风环境监测系统,运用经验模态分解(EMD)与小波分析(WT)对实测强风数据样本进行了非平稳分析,分别建立了基于EMD分解和db10小波的非平稳风速模型,并与传统平稳风速模型的计算结果进行比对。研究表明,统计时段内实测强风样本的顺、横风向风速均表现出较强的非平稳特征,且基于EMD及WT的非平稳模型的时变趋势项走势基本一致;采用平稳风模型计算的紊流强度、阵风因子、紊流积分尺度值整体上均大于相应的非平稳风模型;实测紊流强度离散性较低,I_u∶I_v值均小于但接近于规范所规定的推荐值1∶0.88;Kaimal谱在中频段与不同风速模型的功率谱均吻合良好,但在低频段和高频段存在较大差异,且就低频段的顺风向风谱而言,平稳模型更接近于Kaimal谱,而横向风谱计算中,非平稳模型更接近于Kaimal谱。  相似文献   

13.
针对山区峡谷桥址地形模型入口边界确定问题,以贵州省湘江特大桥桥址处地形为依托,选择维多辛斯基曲线作为地形模型过渡段的基本曲线形式,采用计算流体动力学方法对不同曲线参数进行计算,并结合关联度权重确定法确定最优过渡段曲线参数。在此基础上设计并制作了几何缩尺比为1:1 500的桥位地形模型,分别进行了有、无过渡段地形模型的风洞试验,对比了地形模型有、无过渡段对桥位桥面高度处横桥向风速、风攻角以及桥梁总长1/4跨、1/2跨、3/4跨风剖面的影响。过渡段曲线的二维数值模拟结果表明:采用最优过渡段可有效降低模型边界后方气流等效风攻角,并最大程度地保持入流风速,减小过渡段后湍流度;设置过渡段后风速场分布特性与入流参考风速场分布特性的一致性较好。地形模型风洞试验结果表明:曲线过渡段使风剖面逐渐抬升,气流过渡平缓,不存在明显的加速效应,剪切层发展较慢;设置过渡段后不同风剖面位置处平均风速较无过渡段时大,湍流强度较无过渡段时低;设置过渡段对桥梁主梁高度处风攻角存在一定的影响,但有、无过渡段时的风攻角变化趋势大致相同;采用优化后的过渡段使风剖面逐渐抬升,减小了"人为峭壁"对地形模型试验结果的影响,主梁高度处横桥向风速总体大于无过渡段时主梁高度处横桥向风速。  相似文献   

14.
成贵铁路贵州鸭池河特大桥主桥为主跨436 m的中承式钢桁-混凝土结合拱桥,桥址区山高谷深,气象条件复杂。为确定该桥的设计风速及其相关特性,采用计算流体动力学方法,建立桥址区地形风场计算模型,计算桥址区的风剖面特性、跨向分布特性和风攻角特性等,并根据风速相关性分析推算其设计风速。结果表明:受峡谷效应的影响,横桥向来风时风速放大因子最大,其为抗风设计的主要风向;在桥梁建筑高度范围内,桥址区风速沿横桥向风速剖面具有较好的指数规律,风剖面指数为0.15,与相关规范中山区C类地表的指数有明显的差别;桥面高度处地势平坦,可不考虑峡谷效应;确定该桥设计基准风速为25.3m/s。  相似文献   

15.
为实现在大涡模拟(LES)中准确评估强风湍流对大跨桥梁的作用,关键难点在于生成符合桥梁真实强风特性的入口湍流。为此应用了一种新的规则化波矢量随机流生成方法PRFG3(Prescribed-wavevector Random Flow Generator),该方法遵守连续性方程和泰勒假设,可准确模拟目标湍流的脉动风谱、湍流度和湍流积分尺度等风特性参数。首先利用西堠门大桥结构健康监测系统(SHMS)2016年内采集的风速数据,选取了该桥址区10 min时距平均风速较大但风特性不同的2个强风样本,分析得到相应的强风特性参数;然后采用PRFG3方法合成了符合上述2个实测强风特性的均质各向异性湍流,同时为验证该方法用于主梁节段模型LES入口湍流的适用性,还模拟了缩尺比为1∶50的强风湍流场,并基于OPENFOAM平台,将3类风场赋予LES入口进行了数值计算;最后将LES流场中多个监测点的湍流特性与实测结果进行了对比。研究结果表明:2个实测风场在顺风向、横风向、竖风向的脉动风谱均与Von Kármán谱接近,顺风向湍流积分尺度最大约为192 m,各脉动风...  相似文献   

16.
为生成满足桥梁风工程大涡模拟(LES)要求的入口湍流风场,以丹麦大带桥桥址风特性为例,采用离散再合成的随机流动生成(DSRFG)方法合成了满足目标湍流度、积分尺度、脉动风速谱及空间相关性等参数的各向异性湍流;讨论了DSRFG方法在生成湍流风场上关键参数的合理取值;基于Fluent平台,通过自主开发的用户自定义函数(UDF)程序将生成的湍流风场赋给大涡模拟的入口边界,基于LES研究了不同网格尺寸和时间步长取值,入口湍流风场在计算域流向的变化规律。研究结果表明:DSRFG方法能生成满足桥梁LES模拟要求的指定湍流特性风场,产生的风场风谱和速度分量统计值与目标值吻合较好;入口湍流风场特性在计算域流向有较好的维持,脉动风谱在低频段与目标谱吻合较好,高频段出现一定衰减,而衰减起始频率随网格尺寸和时间步长的减小而增大。最后拟合了网格尺寸与脉动风谱衰减起始频率的关系曲线,建议了LES合适的网格尺寸和时间步大小,相关研究结果可为湍流风场模拟和桥梁风工程大涡模拟提供重要参考。  相似文献   

17.
基于有限元软件分别对曲线钢-混凝土结合梁桥整体升温25℃和桥面板降温7.5℃进行受力分析。研究在整体升温的温度应力作用下沿桥宽方向桥梁跨中挠度值、桥面板横向位置值、纵向应力值,并给出了整桥的变形云图;降温的温度应力下桥面板沿桥宽方向桥梁跨中挠度值、桥面板横向位置值、混凝土板及钢箱梁底板纵向应力值,同样给出了桥面板及钢箱竖向位移分布云图。通过对曲线钢-混凝土结合梁的有限元分析,说明曲率效应和扭转效应在曲线梁桥计算中是不可忽视的。  相似文献   

18.
在尖劈和粗糙元大气边界层模拟技术的基础上增加了格栅挡板这一涡旋发生器,有效地提高了风洞上方的湍流强度,利用该组合边界层发生装置建立了边界层风场.测量了模拟风场的平均风速剖面,湍流强度剖面,风谱等参数.讨论了格栅挡板增加后风场平均风速剖面和湍流强度剖面的变化.三角形尖劈阻风面积沿高度递减产生近似线性的风速剖面,粗糙元调整平均风速和湍流度剖面分布,格栅挡板提高了风洞上方的湍流度.结果分析表明:试验所得风场满足模型试验所要求的小粗糙度和大湍流度的要求.然而,模拟风场的湍流功率谱和积分尺度的高度变化规律和实际大气边界层相反,这是由尖劈下宽上窄的构造特点所决定的.  相似文献   

19.
张玥  周江 《中外公路》2011,31(4):93-98
山区桥梁建设日益增多,而现有的抗风规范对受地形等复杂因素影响的山区风特性并未给出具体的参数取值.该文结合山西省禹门口黄河斜拉桥这一实际工程,编制了基于C++Builder平台的桥梁风场特性分析系统,对桥址处实测风速数据进行了分析计算,得到了桥址处平均风速和风向、风剖面指数、湍流度等风场特性.  相似文献   

20.
为研究山区峡谷地形下非均匀风场对大跨度桥梁静风稳定性的影响,以一座跨越典型山区峡谷地形的大跨度斜拉桥为工程背景,首先,采用计算流体动力学(CFD)软件Fluent对桥址区地形的风场特性进行分析,计算出沿主梁方向的非均匀风速和非均匀风攻角分布;然后,采用ANSYS APDL技术实现能考虑非均匀风速和非均匀风攻角下大桥静风稳定性的非线性分析方法。在此基础上,综合考察非均匀风攻角分布、非均匀风速分布、非均匀风速非均匀风攻角分布等风场条件对大桥静风稳定性的影响,分析各工况下主梁的静风变形与跨中处拉索刚度变化。研究结果表明:与均匀风场条件下的静风响应不同,非均匀风攻角或非均匀风速下主梁静风响应最大值点位于风荷载峰值点与跨中之间,在针对非均匀风场下大桥的静风稳定性分析时,应更注重静风响应最大值点而不是跨中处;非均匀风攻角下大桥的静风失稳临界风速要远低于均匀风攻角的静风失稳临界风速,且其静风稳定性能主要受最大风攻角而不是主跨部分非均匀风攻角的平均值来控制;非均匀风速下大桥的静风失稳临界风速主要由主跨部分的风速平均值和最大值共同影响;主梁的竖向位移和扭转角形状主要由风攻角因素来控制,而横向位移的变化规律相对较独立,其形状基本上以跨中线对称,且其值主要由风速因素来决定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号