首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于点云数据的虚拟预拼装主要包括点云数据采集、拼接控制点提取和拼接控制点匹配。针对完整点云数据存在采集困难、处理成本高等问题,提出用局部点云数据代替完整点云数据进行虚拟预拼装的策略;针对目前拼接控制点提取存在依赖专用软件、效率低且主观性大等问题,基于随机采样一致性、霍夫变换等经典算法和图像处理技术提出大型复杂构件横截面和侧面点云数据的拼接控制点智能提取方法;针对拼接控制点对应关系需人工设定的问题,基于超四点快速鲁棒匹配算法、迭代最近邻算法和广义普氏算法提出拼接控制点智能匹配方法。以大型复杂钢拱桥为例,采用所提的方法对拱肋牛腿-拱间横梁节段和拱肋节段-拱肋节段进行智能虚拟预拼装。工程应用结果表明:所提出的智能虚拟预拼装方法不依赖专用软件、效率高、自动化程度好。研究成果可为钢桥施工质量和安装效率的提升提供理论和算法支撑。  相似文献   

2.
<正>2015年8月23日,港珠澳大桥江海直达船航道桥140号墩钢塔整体段成功吊装就位(见图1)。江海直达船航道桥为中央平行单索面三塔钢箱梁斜拉桥,桥塔为"海豚"形钢桥塔,边桥塔和中桥塔分别高108.5 m、109.756 m。桥塔塔身分主塔柱、副塔柱、装饰塔段、主副塔柱联系杆及桥塔三角撑五部分。主塔分为Z0~Z12共13个节段,除主塔柱Z0、Z1节段采用高强度螺栓连接外,其余节段  相似文献   

3.
针对波形钢腹板PC(预应力混凝土)箱梁桥传统节段悬臂浇筑施工中存在的问题,将波形钢腹板预制装配化施工和异步悬臂浇筑施工工艺相结合,开发一种预制装配化波形钢腹板PC箱梁桥节段悬臂施工方法,将传统工艺中在空中悬臂完成的节段悬臂浇筑及底板与波形钢腹板连接施工作业转变为工厂化预制,降低节段悬臂施工中高空作业工序组织难度,并通过与传统施工工艺工期和经济效益对比分析其推广价值。  相似文献   

4.
基于某变截面椭圆形独塔斜拉桥钢-混凝土组合桥塔节段,建立了桥塔节段1:8缩尺比例模型,采用大型静力加载装置对模型进行了加载试验。结合ANSYS有限元分析,研究了桥塔外包钢板和塔内混凝土的受力情况。研究结果表明:在1.7倍等效设计荷载作用下,桥塔外包钢板和塔内混凝土均处于弹性受力阶段;桥塔外包钢板承受的最大压应力发生在主塔长轴与主梁交接位置,其值约为210 MPa;塔内混凝土承受的实际最大压应力约为18 MPa。研究成果揭示了椭圆形钢-混凝土组合桥塔在正常运营状态下的力学性能,为该类桥塔的设计、建造提供了理论依据。  相似文献   

5.
吴斌  王亚飞 《桥梁建设》2013,43(3):54-59
为研究双索面自锚式悬索桥桥塔钢-混结合段局部应力分布和连接件的受力特点、验证该部位受力是否满足设计要求,以武汉江汉六桥为背景,利用有限元软件ANSYS建立桥塔钢-混结合段三维模型,对施工过程、成桥恒载和最大轴力等工况进行分析,得到结合段钢结构、混凝土及预应力锚杆等主要受力构件在施工过程中的应力分布和变化情况。分析结果表明,除少数应力集中点应力较大外,整体上结合段的应力水平符合设计的要求,针对计算结果对施工阶段的划分提出了优化建议,建议适当提前第1次鞍座顶推的时机以避免下塔柱局部压应力过大,对钢桥塔格构柱间主拉应力较大区域采用增设间接钢筋的加强措施。  相似文献   

6.
淮安市京杭运河淮海路大桥改建工程采用单塔斜拉桥方案。桥塔为椭圆形的异型钢拱塔结构,左右塔肢如同人步行的两条腿交错布置,且左右旋转对称。受现场条件限制,桥塔各异形节段只能采用大型履带吊单钩吊装。桥塔施工存在起吊后姿态调整困难、安装过程中节段自重不利影响及极端气候不利影响等诸多问题。为解决单钩起吊后节段姿态控制的难题,采用有限元法对桥塔各异形节段进行吊装过程分析;为了控制异形塔在施工过程中的应力和变形及极端气候下的力学特性,采用ANSYS软件建立异形塔和支架的有限元模型,分别对悬臂拼装法和支架法施工时塔的应力及线形进行了分析。研究结果表明:基于有限元法精确计算出各节段的重心,通过模拟吊点的三维坐标确定吊装时钢丝绳的长度能实现对异形节段单钩吊装姿态的有效控制;采用支架法方案能有效地控制桥塔的应力和线形,并能有效地抵御当地极端天气因素。该项目桥塔已顺利建成,合龙后桥塔线形及应力均符合设计要求。  相似文献   

7.
为了解港珠澳大桥江海直达船航道桥风帆型桥塔吊装过程中桥塔与吊具连接高强螺栓群的受力状况,提出较为合理的桥塔吊装连接方案,以该桥桥塔Z10号节段吊装连接为例进行分析。采用ANSYS建立桥塔Z10号节段及吊具有限元模型,取0°、45°和90°3种典型吊装模态对高强螺栓群进行受力分析。结果表明:在水平至垂向吊装过程中,吊臂与桥塔采用高强螺栓群连接,满足不了吊装要求。为此,采取用高强度钢拉杆组件替换部分受力过大的高强螺栓等措施加强吊具与桥塔连接的可靠性。采取加强措施后高强度钢拉杆最大拉应力为947MPa、径向剪应力为586MPa;高强螺栓群最大拉应力为829 MPa、径向剪应力为395 MPa,均满足吊装要求,该方案已得到成功应用。  相似文献   

8.
针对高原环境下混凝土(RC)桥塔表面开裂问题,提出波形钢板-混凝土(WS-RC)和预制UHPC板-混凝土(UHPC-RC)2种新型组合桥塔结构体系,以高原地区某桥塔结构设计方案为背景,采用ABAQUS有限元软件,分别建立3种桥塔方案的节段有限元模型,对比分析桥塔节段的温度场与温度应力特性,以及UHPC层厚度对UHPC-RC组合桥塔抗裂性的影响。结果表明:传统RC桥塔方案和WS-RC组合桥塔方案混凝土表面最大主应力均显著高于UHPC-RC组合桥塔方案;UHPC-RC组合桥塔方案混凝土应力集中程度及表面应力幅均显著降低;随内、外侧UHPC层厚增大,UHPC-RC组合桥塔内侧UHPC层内表面最大主应力值变化不显著,混凝土层及外侧UHPC层外表面最大主应力值均随之减小。  相似文献   

9.
装配式铺面在施工时可能会由于装配空间不匹配造成装配失败。文中基于三维扫描设备获取实测点云,提出一种装配式铺面虚拟装配技术。基于点云采样、降噪、分割与特征提取等技术,提出装配式铺面板与装配空间的三维重构方法。在CATIA软件中通过虚拟装配实现了装配干涉检测,并在干涉查询表中给出解决方案。  相似文献   

10.
赣州市集结大桥主桥为外包钢壳混凝土拱形桥塔斜拉桥,为确保钢混组合拱形桥塔节段拼装精准合龙,采用MIDAS Civil软件建立拱形桥塔空间几何模型,分析外包钢壳和混凝土湿重对桥塔变形的影响,采用切线初始位移法对桥塔施工阶段位移进行预测,通过求解制造线形对桥塔待拼装节段进行预偏修正,并与实测数据进行对比。结果表明:外包钢壳能显著减小桥塔变形;施工阶段桥塔变形主要由混凝土湿重引起,临时支撑能有效减小混凝土浇筑产生的横向变形。基于切线初始位移法的几何姿态预测方法能有效预测桥塔拼装全过程几何姿态,实测成桥阶段桥塔各节段最大偏位为6 mm,小于施工控制要求,具有较高的实施精度,可保证成桥状态下桥塔几何姿态的准确性。  相似文献   

11.
在缆索支承桥中,采用钢桥塔符合可持续工程和绿色工程的结构设计新理念,而钢桥塔在我国的应用十分有限,现行的各种桥梁规范中也没有关于钢桥塔的规定。本文针对钢桥塔的稳定构造设计、塔柱截面构造优化、钢桥塔和混凝土基础的连接构造、塔形构造选择等问题进行了分析研究,开展了钢桥塔的稳定性试验,提出了防止钢桥塔失稳的措施,研究了塔柱截面构造的合理设置,对常用的塔-基连接的构造型式进行了适用性分析,并对几种常见塔形的受力性能进行了对比分析,研究结果可为钢桥塔的构造设计提供参考。  相似文献   

12.
日本新湊大桥跨越富山新港港口,主桥为(60+60+360+60+60) m 5跨连续混合梁斜拉桥。桥塔为 A 形钢结构,上塔柱在工厂制作后拼装成大节段,海上运输至现场,再使用浮吊整体架设。主跨主梁为双室钢箱梁,箱梁下设人行道成双层桥面。主梁侧面安装风嘴,人行道侧面安装透明的丙烯树脂板,整体形成六边形截面。主跨钢-混结合段和桥塔附近钢箱梁节段采用起重船吊装架设,其它钢箱梁节段采用垂直起吊、悬臂拼装的方法施工。  相似文献   

13.
目录          下载免费PDF全文
为深化对钢管混凝土桥塔的认识,推动钢管混凝土结构在缆索承重桥梁桥塔中的应用,首先对钢管混凝土桥塔的工程应用情况及其一般构造进行了梳理,讨论了目前钢管混凝土桥塔设计中存在的主要问题,从构造简单、施工高效的角度对现有钢管混凝土桥塔构造进行了优化。而后对钢管混凝土桥塔钢壁板的局部屈曲性能及塔柱的力学性能研究进展进行了评述,并给出了推荐的设计方法。最后通过与传统钢筋混凝土桥塔和钢桥塔的对比,分析了钢管混凝土桥塔的技术特点和经济性。结果表明:由于对钢与混凝土共同承载机理认识不够深入、受混凝土单侧约束钢板的局部屈曲理论研究相对薄弱、钢混界面传力性能不明确等问题,导致目前钢管混凝土桥塔的构造过于复杂,施工高效性较差;构造优化后的PBL加劲型钢管混凝土桥塔的加劲构造、钢混连接构造更加简洁,钢壁板对混凝土的约束效应更强,无需配筋设计,能够节约用钢量、简化钢结构制造流程及现场安装工序,提高桥塔的工业化制造及装配化施工水平;考虑局部屈曲影响的加劲钢壁板构造设计方法和钢管混凝土桥塔承载力计算方法更加安全、合理;钢管混凝土桥塔具有设计灵活性、施工高效性和承灾高韧性,建设成本及养护成本远低于钢桥塔,在经济性上与传统钢筋混凝土桥塔可展开竞争,具有广阔的应用前景。  相似文献   

14.
泸定大渡河兴康特大桥主桥为1 100m单跨钢桁梁悬索桥,针对该桥桥址区地震动参数高的特点,开展结构抗震设计关键技术研究。基于延性抗震设计理念提出耗能型中央扣,将防屈曲钢支撑用作中央扣杆件,防屈曲钢支撑的两端以铰接形式与缆、梁连接,只承受轴向力,不产生弯矩。基于组合设计思想提出波形钢腹板钢-混组合桥塔横梁,利用预应力混凝土顶板和底板抗弯、高强度钢腹板抗剪。对比耗能型中央扣与传统刚性、柔性中央扣对悬索桥抗震性能的影响;对比波形钢腹板钢-混组合桥塔横梁与普通钢筋混凝土、钢桥塔横梁的抗震性能,并对组合桥塔横梁进行缩尺模型试验,结果表明:铰接式耗能型中央扣能显著改善高烈度震区大跨径悬索桥的抗震性能;波形钢腹板钢-混组合桥塔横梁具有良好的综合抗震性能,连接构造安全可靠。  相似文献   

15.
广州沙湾大桥索鞍区模型试验   总被引:3,自引:2,他引:1  
为检验广州沙湾大桥索鞍区受力是否满足规范要求,对该桥斜拉索鞍座处桥塔节段进行模型试验研究。制作最大设计索力鞍座处桥塔节段足尺模型,依次进行节段受力性能试验和斜拉索抗滑移性能试验,并采用ANSYS建立相应桥塔节段有限元模型进行理论计算。试验结果与有限元计算结果表明:试验过程中,桥塔节段混凝土表面没有出现裂纹,内部未出现开裂,桥塔节段混凝土拉、压应力均满足设计和规范要求;分丝管应力水平较低且变形较小,其对应力的分散作用显著;施工阶段斜拉索不会在鞍座内产生明显的滑移;成桥阶段,斜拉索抗滑锚固装置完全能满足设计抗滑能力的安全系数的要求。  相似文献   

16.
重庆红岩村嘉陵江大桥为(91.4+138.6+375+120+7.8) m公轨两用钢桁梁斜拉桥,桥塔采用门式框架钢筋混凝土结构,塔高202 m。桥塔以红岩片为设计理念,塔柱及横梁均设计为台阶造型,上塔柱锚固段设有用于斜拉索锚固的钢锚箱。塔柱标准节段为6 m,共计36个节段,采用液压爬模分节段施工,在圆弧倒角及造型台阶部位采用定型钢模板,剩余大面部分采用维萨板;塔柱施工至一定高度后在两塔柱之间设置横撑施加预顶力,以平衡塔柱的内倾水平力;上塔柱锚固段钢锚箱采用动臂塔吊吊装,其中首节段钢锚箱采取索导管与钢锚箱箱体分离安装工艺;混凝土采用研发的泵管转动装置浇筑成型。塔梁采取异步施工工艺,先施工塔柱后施工横梁,中横梁采用落地式钢管支架,上横梁采用牛腿支架作为支撑体系。  相似文献   

17.
以目前世界上最大跨度的某钢桁梁斜拉桥空间钻石形桥塔为依托,对目前世界上首台万吨米级W12000-450型塔吊的附墙设计及附墙与钢塔的耦合作用进行系统研究。基于桥塔的施工工艺及现场结构布置,确定了塔吊的位置及附墙布置。通过建立桥塔与塔吊的施工阶段有限元模型,确定出塔吊附墙对钢塔的最不利荷载。在此基础上,利用钢塔T5节段局部分析有限元模型,对塔吊附墙与钢塔耦合效应进行分析。基于附墙对钢塔的作用效果分析,提出了钢塔T5节段的局部加固方案,对其加固效果进行了分析。研究表明:在最不利塔吊附墙荷载作用下,钢塔T5节段局部最大Mises应力为335 MPa,大于其材料容许应力312 MPa,需要对其进行局部加固。加固后,钢塔T5节段局部最大Mises应力降低至185 MPa,局部应力和变形均满足要求。  相似文献   

18.
平潭海峡公铁大桥大小练岛水道桥为主跨336m的双塔双索面钢桁梁斜拉桥。桥塔采用H形钢筋混凝土结构、高152m,桥塔墩采用直径4.4m的钻孔桩基础,采用圆端哑铃形高桩承台;主梁采用带副桁的正交异性板钢桁梁结构,主桁采用N形桁式,桁高13.5m、桁宽15m。该桥基础采用长栈桥和施工平台方案施工;钻孔桩采用KTY4000型液压动力头钻机施工;承台采用双壁钢吊箱围堰施工;桥塔塔柱采用ACF-125型全封闭液压爬模施工,标准施工节段高6m,索塔锚固区采用低回缩环向预应力锚固体系、二次张拉工艺施工。边跨、辅助跨钢桁梁在工厂内组拼成整体大节段,现场采用浮吊整体吊装;墩顶钢梁节段采用浮吊分节段架设;中跨钢梁节段采用1 100t架梁吊机单悬臂架设。  相似文献   

19.
合福铁路铜陵长江大桥主桥为双塔多跨连续钢桁梁三索面斜拉桥,其3号桥塔墩采用圆端形沉井基础,沉井高68 m,其中上部18 m为钢筋混凝土结构,下部50 m为钢壳混凝土结构,总重约5000 t.50 m钢沉井在工厂分6节制造、组拼,由1200 t浮吊起吊装船、12800 t驳船运输至墩位,第1节钢沉井利用浮吊整节段起吊入水后自浮,在墩位处抛设锚锭临时定位,第2~6节钢沉井利用浮吊整节段起吊并对接接高,钢沉井采用无导向船重锚精确定位.实践证明,大型钢沉井整节段制造、运输、现场整节段对接接高施工技术保证了钢沉井的整体质量,加快了沉井施工进度.  相似文献   

20.
<正>2015年4月26日,蒙西华中铁路公安长江公铁两用特大桥4号桥塔最后一节段混凝土顺利浇筑,这是全桥首个完成主体结构施工的桥塔(见图1)。公安长江大桥共有3号、4号2个桥塔,桥塔高182.5m,分32个节段浇筑,此次完成的4号桥塔第32节段高5.9m,单柱混凝土130余方。4号桥塔封顶为工程如期建设完成打下了坚实的基础,是工程建设取得的又一个阶段性的胜利,标志着大桥即将进入主桥斜拉钢桁梁悬臂架设阶段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号