首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
以湖南省张花高速公路酉水大桥(80m+145m+80m)斜交高墩大跨度悬臂浇筑预应力混凝土连续箱梁桥为工程背景,运用MIDAS软件建立箱梁整体梁格模型,得出桥墩的最不利荷载组合,在此基础上运用AN—SYS软件建立主桥斜交高墩实体模型,对盖梁在最不利上部荷载作用下的受力特征进行分析。分析计算结果表明,斜交高墩盖梁应力分布特征有别于正交桥墩盖梁,该正八边形盖梁最小压应力产生于支座垫石与盖梁接触面中心处,以垫石为中心向四周逐渐变大;盖梁在两个支座垫石之间的局部区域存在超出混凝土抗拉极限设计值的拉应力,该拉应力产生于盖梁中心上表面处。分析结果对不同于正交桥墩盖梁支点角隅区钢筋的配置有指导意义。  相似文献   

2.
以某座(60+40)m现浇预应力混凝土连续宽箱梁为工程背景,通过建模计算,分析宽箱梁的空间受力性能,用以指导设计。结果显示:不同约束条件对宽箱梁支点处的横向受力分配影响很大;均布恒载作用下边腹板的受力分配比例增大;活载偏载对宽箱梁的应力横向分配影响很大,设计时需考虑一定的偏载系数。  相似文献   

3.
为了实现双幅转体桥在共同使用一个转体墩和一套转体系统的情况下成功转体,通过在双幅桥的梁间设置连接横梁及在墩顶桥面设置临时横向斜拉塔等措施,以有限元分析的方法结合实际工况,确定连接横梁及临时斜拉塔的设计参数,建立连接横梁及临时斜拉塔的计算模型,得出横梁及临时斜拉塔在转体各阶段的受力理论数据;通过在现场设置应力计等方式,实时收集转体各阶段横梁及临时斜拉塔的受力情况。通过对比理论数据与实际采集的数据后得出结论,采用以上措施能够实现双幅转体桥单支点同时转体施工,并且转体梁的横向变形及稳定均满足施工安全要求。  相似文献   

4.
为给钢-混凝土组合梁中支点负弯矩段混凝土施加预应力,以上海崇明越江通道长江大桥工程B4标段(85十5×105+90)m钢-混凝土组合结构连续箱梁为例,采用先简支后连续配合中支点桥面板滞后结合和支点升降法等措施进行施工.组合梁整孔预制(中支点两侧各约7.5m的混凝土顶板先不结合),运抵现场整孔架设后浇注底板双结合段混凝土,待底板混凝土达到一定强度后起顶组合梁,浇注顶板湿接缝混凝土,然后落梁进行后续施工.监测结果表明,体系转换完成后、二期恒载铺设前各墩墩顶混凝土顶板压应力储备为3.01~4.70 MPa,在二期恒载铺装前桥面线形的实测值与设计值偏差普遍在3 cm以内,墩顶体系转换时应力和线形控制较好.  相似文献   

5.
武汉青山长江公路大桥主桥为主跨938m的双塔双索面全飘浮体系斜拉桥,单侧边跨结合梁长368m,由钢槽梁与预制混凝土桥面板通过湿接缝及剪力钉结合而成。其中,钢槽梁宽48m,桥中线处梁高4.06m;预制混凝土桥面板最大单块尺寸10.135m×3.2m×0.37m,重34.2t。边跨结合梁施工采用先顶推架设钢槽梁,再安装预制混凝土桥面板,最后浇筑湿接缝的整体施工方案。钢槽梁节段由浮吊吊装至主墩墩旁托架平台,依次拼装焊接3个节段后由主墩托架平台往边跨方向顶推架设;混凝土桥面板采用工厂化预制,采用50t全回转架板吊机由主墩往边墩方向逐块吊装;桥面板架设后,浇筑湿接缝混凝土,完成结合梁结合施工。施工过程中采取了临时支点同步下落、墩顶钢梁横向压载、辅助墩支点顶落梁等质量控制措施。  相似文献   

6.
预应力混凝土连续箱梁桥的顶板结构受力复杂,导致病害突出。该文以某连续箱梁桥为背景,采用有限元法和解析法分别分析了预应力混凝土箱梁顶板的横向应力及主应力分布,讨论了顶板纵向裂缝产生原因及其影响因素,发现:①施工时合理设置箱梁桥面板横向预应力钢束张拉锚固程序可以改善箱梁顶板受力性能;②采用平面梁单元模拟顶板受力可以在简化计算的基础上取得和空间分析比较吻合的结果;③合理确定腹板尺寸和底板厚度,能够调整顶板横向应力的分布。  相似文献   

7.
小榄水道特大桥主桥采用100m+220m+100m预应力混凝土V形刚构与钢管混凝土柔性拱组合桥式结构,大桥全长7686.57m,桥型与跨度在世界铁路桥梁中均居领先地位。首先利用单元生死技术,编制了APDL命令流程序,考虑了混凝土的徐变特性,建立施工全过程仿真计算模型。针对吊杆、拱、梁受力比值进行了讨论,系统深入地研究了三片腹板剪应力分布规律,各施工阶段箱梁纵向弯曲正应力,成桥后箱梁纵向弯曲正应力和横向弯曲正应力的分布规律。研究结果表明,该新型组合桥梁结构,梁拱共同受力,结构弯矩效应主要表现为拱受压、梁受拉的受力特性,拱与梁在受力方面的优点得以充分发挥,结构竖向刚度大,外形轻巧。  相似文献   

8.
制作了两片单箱双室波形钢腹板试验梁,分为桥面板加承托和不加承托。以室内试验、有限元分析结合理论推导来探讨混凝土桥面板承托的设置对波形钢腹板箱梁桥面板横向受力的影响。通过静力试验,对试验梁桥面板的受力特点和箱梁变形进行了观测和分析。将两片梁的相关试验数据进行对比,并结合有限元分析结果、理论分析结果,得出结论如下:承托的设置对箱梁的结构性能是有一定影响的。桥面板承托的设置增强了箱梁的抗弯、抗扭刚度,减少扭转剪应力和畸变应力,加大了桥面板支点刚度,力线过渡比较均匀,减小次内力;使得箱梁挠度较不加承托时同一工况下的相应值均有一定程度的减小,约为15%。承托的设置对桥面板的有效分布宽度影响很小,加承托与不加承托的单向板的有效分布宽度误差仅为5%;但是承托的设置对波形钢腹板箱梁桥面板的横向内力存在一定影响,综合试验结果和力学分析结果,加设承托与否对桥面板横向受力的影响一致,且影响值均在10%以上。总之,对于波形钢腹板箱梁而言,从自身构造上来讲波形钢腹板与承托这两类因素均会对桥面板横向受力产生一定影响,不可忽略。  相似文献   

9.
兰州西固黄河大桥主桥为(67+110+360+110+67)m双塔双索面钢-混结合梁斜拉桥,南岸引桥为2×40m预应力混凝土简支箱梁桥,北岸引桥为5×40m预应力混凝土连续箱梁桥。为确定该桥的合理横向抗震体系并优化其布置形式,采用SAP2000Nonlinear程序建立全桥有限元模型,分析该桥在横向滑动、过渡墩约束、辅助墩约束及横向完全约束4种墩梁横向约束体系下的地震响应,并针对横向挡块减震措施分析不同材料挡块控制参数对抗震性能的影响。结果表明:横向滑动体系下桥墩的地震响应最小,但墩-梁横向相对位移较大;过渡墩横向约束和辅助墩横向约束体系均会增大相应桥墩的地震响应,其中辅助墩横向约束体系下增加更为明显;横向完全约束体系下,各墩受力均不利;混凝土刚性挡块难以同时减小过渡墩与辅助墩的地震响应,横向减震效果不好;采用弹塑性挡块能显著降低过渡墩与辅助墩的墩底内力和墩-梁横向相对位移。  相似文献   

10.
以舟山市富翅门大桥富翅侧引桥的7跨预应力混凝土连续梁桥为工程背景,采用桥梁专用计算软件Midas Civil建立了空间有限元分析模型,对该预应力混凝土连续梁桥步履式顶推过程进行了仿真分析计算,计算结果表明:该桥在顶推施工过程中箱梁顶底板混凝土强度有一定的安全储备,顶推过程中主梁局部受力安全,且施工过程中主梁总体变形量不大;在顶推过程中主梁临时墩及各墩旁托架位置处均未出现负反力,即顶推过程中不会出现支点脱空的现象;施工过程中钢导梁的前端竖向位移较大,施工时要采取必要的预防、处理措施,同时应注意对钢导梁与主梁的相对横向偏位进行及时的纠偏,防止钢导梁因扭矩过大而发生扭曲变形。  相似文献   

11.
援马尔代夫中马友谊大桥主桥为(100+2×180+140+100+60)m混合梁V形支腿连续刚构桥,180m跨和140m跨跨中区段主梁采用钢箱-超高性能混凝土叠合梁(每段叠合梁两端各包含长4.0m的钢-混结合段),其跨中分别设置50m和22m长的钢箱梁合龙段。因施工海域长周期波涌浪强烈,该桥大节段钢箱梁采用顶推合龙方案施工。在起吊钢-混结合段钢壳时,采用自动脱空的铰支架机构,以防止其碰撞甲板;在吊装小节段钢箱梁(50m长的钢箱梁合龙段分为4个小节段)至混凝土箱梁顶时,采用横向油气弹簧+竖向橡胶支垫的落梁缓冲技术,以防止钢箱梁下落时与混凝土梁体碰撞;顶推时,通过支点反力和导梁应力双控来保证结构安全,并通过调整混凝土梁顶部压重来控制主墩平衡弯矩;钢箱梁采用横向错位工艺合龙,实现了高精度配切合龙。  相似文献   

12.
工程项目设计中,单箱多室宽箱梁横向桥面宽度往往大于跨度,受力情况复杂,采用常规梁单元计算分析,无法有效精确模拟横桥向箱梁受力状态.其中横桥向不同腹板的剪力分配情况,为多腹板宽箱梁横向受力的重点.为研究单箱多室宽箱梁不同腹板剪力分配的差异,建立箱梁上部实体单元有限元模型及相关对比模型.经分析可知,支座布设情况对宽箱梁多腹板剪力分配,起到至关重要的作用.  相似文献   

13.
为掌握宽弯斜混凝土箱梁的荷载效应分布特征,以某5×20m的预应力混凝土连续梁桥(箱梁宽54m,曲线半径小,斜交)为背景,开展从混凝土箱梁浇筑至运营前共1年的监测,采集并分析箱梁的应变和挠度;基于梁格法,建立箱梁有限元模型,分析箱梁纵、横向应力及竖向挠度。结果表明:监测期内,箱梁的应变和挠度变化显著;钢束张拉后箱梁跨中底板横向压应变小幅减小;满堂支架拆除后箱梁应变调整1~2d;箱梁纵向应变长期趋于平稳;预应力引起跨中上拱,曲线内侧至外侧上拱幅度逐渐减小;跨中断面横向应变比例集中在0~1且极值相差很小;弯桥与直桥跨中断面纵向应力差与曲线半径正相关;弯扭耦合作用下箱梁外侧箱室挠度陡增;宽跨比较大的曲线箱梁可按梁格法计算,进行纵向配束,并加强横向设计。  相似文献   

14.
宣城市凤凰桥上部结构采用双提篮梁拱组合结构.主梁采用单箱7室预应力混凝土箱梁,箱梁采用纵、横向双向预应力体系,箱梁宽35 m,两侧设混凝土挑梁,横断面宽度为50 m;拱肋为正拱圈和斜拱圈通过横撑共同组成的钢管混凝土结构.下部结构采用重力式桥台,群桩基础.结构计算分析表明该桥拱肋、吊杆、横撑、箱梁等主要构件受力及桥梁刚度、整体稳定性均满足规范要求.大桥采用先梁后拱的方法进行施工.  相似文献   

15.
大跨径混合梁斜拉桥边跨混凝土梁常采用短线预制拼装法施工,施工过程中有多次体系转换。为确保施工过程中的安全和节段间的顺利拼接,以石首长江公路大桥主桥北边跨(75+75+75)m混凝土梁为对象,分析宽幅短线预制混凝土箱梁施工阶段以及成桥恒载状态下横向受力与变形,确定横向预应力分次张拉时机和控制目标,采用MIDAS Civil建立梁段有限元模型,根据施工阶段应力和位移结果确定合理的横向预应力张拉方案。研究结果表明,宽幅短线预制混凝土箱梁施工过程中以横向受力为主,且多次体系转换,横向预应力须分次张拉到位;横向预应力分次张拉方案由位移和应力双控,横向预应力分次张拉的次数和时机在保证安全和顺利拼接的基础上可根据施工特点进行优化,预应力张拉束数和张拉力百分比可结合工期要求和预应力施工的便利性来进行考虑。  相似文献   

16.
九江长江公路大桥主桥为(70+75+84+818+233.5+124.5)m六跨不对称双塔双索面混合梁斜拉桥,南边跨及部分中跨为混凝土箱梁,其余为钢箱梁,钢箱梁采用双悬臂拼装施工工艺。为保证钢箱梁双悬臂施工期不平衡力作用下的结构及施工安全,在北塔与钢箱梁间设置了竖向、横向及纵向临时约束:通过钢绞线将设置在北塔下横梁上的竖向混凝土支墩和钢箱梁底部的钢支墩连成整体,形成竖向临时约束;竖向临时约束兼作钢箱梁双悬臂施工期间的纵向临时约束,主要由竖向临时约束产生的摩擦力抵抗在悬臂吊装过程中产生的不平衡力;在合龙阶段增设顶推装置进行纵向临时约束,兼做中跨顶推辅助合龙的顶推装置;横向临时约束主要由抗风支座和塔梁间的临时钢支墩实现。  相似文献   

17.
文章以杭州湾跨海大桥70m整体预制箱梁为实例,介绍了箱梁的受力特性;对箱梁在纵向预应力筋初张拉及终张拉、横向预应力筋张拉、移梁及大气温度变化状态下进行了应力及挠度的测试;采用GQJS和ANSYS有限元程序计算箱梁在存梁台座上的受力及变形;研究表明箱梁的应力变化复杂,实测挠度与分析结果吻合的较好;本文的分析和测试结果对大型整体预制箱梁的测试方法有一定的指导意义。  相似文献   

18.
本文以襄樊内环线汉江三桥斜拉索主桥为例,其上构为三跨一联连续分离式双箱箱梁(128.5+310+128.5)m三向预应力混凝土结构,论述了斜拉索主桥悬臂现浇箱梁常用的前支点挂篮施工技术,从挂篮构造、拼装、预压、挂篮行走、到箱梁砼施工等方面进行了详细介绍,可为同类型桥梁的施工提供借鉴。  相似文献   

19.
在短线法预制施工中,主梁往往伴随着多次体系转换。对于宽幅混凝土主梁,在多次的体系转换中混凝土梁段横向受力问题突出,对混凝土梁段施工过程中的受力与变形进行有限元计算分析是十分必要的。目前对于宽幅混凝土主梁横向受力分析多采用实体单元模拟计算,然而应用实体单元建模计算有着建模复杂、对计算机要求高等缺点,影响了计算效率。该文以石首长江公路大桥北边跨混凝土标准梁段预制施工的模拟计算为例,详细对比分析了梁单元与实体单元建模计算的优缺点。研究结果表明:用梁单元模拟宽幅箱梁的计算结果精确度略逊于实体单元,但已满足工程应用精度要求,用梁单元建模比实体单元建模更加简便、对计算机的要求要低,能大大提高计算效率。  相似文献   

20.
以府河大桥主桥70+120+70(m)预应力混凝土连续梁为背景,对挂篮施工过程的箱梁横向框架进行了受力分析.结合分析结果,对大跨径、宽幅预应力混凝土连续梁结构设计提出了一些建议,为以后同类型桥梁设计提供参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号