首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
湖南省大岳高速洞庭湖大桥锚碇位于洞庭湖湖畔,且基坑开挖及锚碇基础施工处于洞庭湖汛期阶段,为保证锚碇基础施工的连续性和安全性,在距离锚碇基坑边线15 m处设置一环形土围堰用以阻挡洪水。采用有限元软件对环形围堰及现场环境等进行整体建模,从围堰高度验算、围堰渗流计算、围堰整体抗滑稳定性计算、围堰变形与应力计算及土围堰基底抗滑稳定性计算等5个方面进行计算分析。研究得出高水位条件下采用环形土围堰作为阻水结构的思路得当,既保证了施工区域的施工安全,又避免了汛期出现停工现象,大大降低了施工成本,同时为今后类似工程积累了宝贵经验。  相似文献   

2.
安庆长江铁路大桥主桥为主跨580 m的多跨连续钢桁梁斜拉桥,该桥3号墩基础采用圆形双壁钢围堰施工,围堰定位采用无导向船重锚锚碇定位系统.针对3号墩基础深水无覆盖层地质条件下围堰施工,为实现围堰的精确定位,从钢筋混凝土梳齿锚、收锚平台及转向马口3个方面进行围堰锚碇定位系统研究.围堰部分锚碇采用钢筋混凝土梳齿锚取代铁锚,钢筋混凝土梳齿锚由混凝土实体、起吊座、锚座、梳齿组成;围堰部分边锚通过新型转向马口转向至前、后定位船收锚;锚绳转向采用新型马口结构.  相似文献   

3.
安庆长江铁路大桥3号桥塔墩钻孔桩基础采用圆形双壁钢套箱围堰施工.为实现围堰的精确定位和施工安全,经方案比较采用无导向船的前、后定位船锚碇系统定位方案,锚型与数量、锚绳及定位船通过计算围堰下沉到位后主锚总拉力及各锚碇受力确定.设计中通过在围堰侧面的边锚拉结点及围堰顶面设置单向或多向转动的辊轴式马口解决大直径锚绳转向和收放难题;通过在前、后定位船和围堰顶的收锚平台上安装卷扬机进行绞锚实现边锚收放或换锚.岸上边锚、地锚均挖坑埋设;水中锚碇采用240 t抛锚船抛设完成,根据围堰下沉进展及时进行锚绳系解、收紧、过锚,完成锚碇系统施工.  相似文献   

4.
深中通道伶仃洋大桥为(580+1 666+580)m三跨钢箱梁悬索桥,东、西锚碇均为大型海中重力式锚碇,由于海上施工难度大,安全风险高,2座锚碇均采用筑岛围堰施工。东锚碇筑岛围堰采用锁扣钢管桩+工字形板桩组合方案;钢管桩按先上、下游侧,后两侧的顺序,采用YZ-300振动锤施沉;工字形板桩采用起重船起吊并插入相邻锁扣钢管桩,利用DZJ-240振动锤分区、分段施沉;围堰内侧吹填砂,外侧抛填袋装砂护坡。西锚碇筑岛围堰采用水上地基处理(DCM桩)+抗浪砂袋围堰+吹砂填筑+陆上地基处理(挤密桩)的施工方案;砂垫层抛完后由整平驳船进行水下整平;抗浪砂袋分4层施工,采用水下填充和水上填充2种方法。该桥锚碇采用2种筑岛围堰施工技术,施工期间结构安全,减小了海上施工风险,提高了施工工效。  相似文献   

5.
本文以武汉军山长江公路大桥异形双壁钢围堰的下沉的锚碇系统施工为实例 ,介绍了国内同类型桥梁中最大钢围堰锚碇系统的施工技术。  相似文献   

6.
武汉鹦鹉洲长江大桥主桥为(200+2×850+200)m三塔悬索桥,该桥北锚碇为"带孔圆环+十字隔墙"重力式沉井基础,沉井外径66m,高43m;1号塔基础为44根φ2.0m钻孔灌注桩,2号塔基础为39根φ2.8m钻孔桩;3号塔基础为20根φ2.8m钻孔桩;南锚碇为"圆形嵌岩地下连续墙+内衬"结构形式,地下连续墙为钢筋混凝土结构,外径68m,壁厚1.5m。根据该桥基础特点,北锚碇沉井采用3轮接高、3次下沉施工;1号塔基础采用筑岛、双排防护桩施工方案;2号塔基础采用先钢围堰后平台的施工方案,钢围堰采用气囊法整体下河;3号塔基础采用先平台后围堰、单排钻孔防护桩施工方案;南锚碇采用液压铣槽机配合冲击钻施工地下连续墙的施工方案。  相似文献   

7.
介绍了铜陵大桥主墩钢围堰锚碇系统的组成及作用,锚碇系统的受力计算,锚碇系统的施工及工程流程。  相似文献   

8.
秀山大桥主桥为双塔三跨结构的悬索桥,跨径布置为264+926+357=1547m,主梁采用钢箱梁结构,官山侧主塔基础采用扩大基础结构,秀山侧主塔基础采用承台加桩基础结构,两侧的锚碇结构均为重力锚。秀山侧锚碇位于瓦窑们岛边上,大部分位于海中,采用钢管混凝土桩围堰进行施工,国内首次,海床基岩裸露,无覆盖层,水流急,可达3. 7m/s,钢管混凝土桩围堰施工难度大,国内无可借鉴的施工经验,其成功的实施为今后在类似复杂海况下桥梁基础设计与施工提供了一定的应用价值和参考价值。  相似文献   

9.
沪通长江大桥主航道桥为(140+462+1 092+462+140)m双塔连续钢桁梁斜拉桥,桥墩均采用沉井基础,其中下部钢沉井采用船坞内制造,整体出坞、浮运至墩位处的施工方案。浮态钢沉井最大锚泊力为6 940kN,锚泊系统采用大直径钢桩锚碇系统,该锚碇系统由主锚碇、边锚碇、钢缆绳等组成。边锚碇为钢筋混凝土结构,单重约900t,在桥址附近的船厂内预制,用1 800t浮吊起吊装船,4 000t驳船运输。采用1 000t(1 300t)浮吊吊起边锚碇后,通过绞锚移船,调整浮吊船位和船身的扭角来使边锚碇锚位和棘爪方向满足要求,浮吊松主钩,将边锚碇放到河床上,150t浮吊在水面上摘钩。抛设8只边锚碇共用时7d。  相似文献   

10.
商合杭铁路芜湖长江公铁大桥主桥为主跨588m的双塔双索面箱桁组合梁斜拉桥,该桥2号桥塔墩采用44根?3m的钻孔灌注桩基础、圆端形承台。2号桥塔墩基础采用围堰平台一体化的总体方案施工,围堰采用双壁结构,平面尺寸为71.2m×35.0m,高37.4m。底节围堰采用气囊法下水并浮运到位;利用锚碇系统精确定位,采用取消后定位船和加长锚链的方式压缩锚碇系统长度;围堰定位后,利用围堰作为平台施工钻孔桩;在最后1轮钻孔桩施工时,同步接高围堰,利用5 600t的提升下放系统将围堰下沉到位;采用分区灌注的方法完成封底混凝土施工,封底混凝土达到设计强度后抽水,分2层施工承台混凝土,完成基础施工。  相似文献   

11.
大型桥梁基础施工对堤防稳定性的影响分析   总被引:1,自引:0,他引:1       下载免费PDF全文
珠海市洪鹤大桥#3主墩位于既有中珠联围防洪大堤背水侧防护区,桥梁基础施工需在堤防保护区进行筑岛填筑、深基坑开挖。为确保桥梁施工期防洪大堤的安全,针对#3主墩基础施工期间防洪大堤的渗流及整体稳定性进行了分析,并进行了位移和沉降监测。结果显示:桥梁基础施工对大堤稳定性影响较小,大堤不会发生失稳。  相似文献   

12.
围堰施工是跨江通道工程水域侧基坑实施的前提条件和关键环节,天然软土地基淤泥质软土层厚度大、承载力低,采用长管模袋砂围堰能较好地适应软土地基的变形和抵抗水流的冲刷。以广州南沙明珠湾区跨江通道工程施工围堰为实例,采用数值分析模拟长管砂袋围堰的施工全过程,计算产生的沉降变形及基坑开挖对围堰的影响。结果表明,围堰施工时堰底内侧沉降明显,外侧坡脚处水平外移及隆起,基坑开挖引起围堰内侧变形明显大于外侧。  相似文献   

13.
何海群 《城市道桥与防洪》2020,(5):222-224,M0022,M0023
随着社会经济的发展,世界上不少国家有围海造地的需求。大砂袋围堰由于其具有良好的整体性和柔韧性,且对堤基的变形具有较好的适应性,已成功应用于多个围海造陆工程。但在大砂袋围堰施工过程中也出现过围堰失稳的案例。以一填海造陆工程为例,介绍了大砂袋围堰的设计及施工情况,利用极限平衡法分析了其在施工过程中出现塌陷的原因,为以后的工程现场施工提供借鉴经验。  相似文献   

14.
邹翀  张文新  李云涛  金新凯 《隧道建设》2019,39(10):1575-1584
为有效控制上软下硬地质条件下海域围堰围护结构的变形,以汕头苏埃通道工程始发井及后配套基坑为依托,对基坑施工中围护结构水平位移、混凝土支撑轴力、地面沉降等项目进行全过程监测,分析围护体系的变形受力与开挖工序的对应关系。主要研究与结论如下: 1)围护结构的最大水平位移的发生位置随基坑开挖深度增加逐渐下移,围护结构水平位移与支撑轴力最大值都位于基坑中下部位置,且二者都表现了基坑西侧大于基坑东侧; 2)基坑周边未加固段地表持续沉降,加固段的地表沉降较小; 3)建立综合监测预警机制,对基坑施工薄弱部位提出预警,信息化指导施工,保证了基坑的施工安全,为后续类似地质条件下基坑支撑体系提出了优化建议。  相似文献   

15.
以漳州市圆山大道下敷综合管廊工程为依托,运用FLAC3D平台对管廊基槽开挖及管节吊装等工况进行基于强度折减的安全系数分析,得到其稳定安全系数为1.31,满足规范及设计要求。进一步分析不同测点及不同工况下的位移和内力变化规律,发现不同工况下的稳定安全系数没有显著差异,且钢板桩深层水平位移远高于其他测点位移。  相似文献   

16.
根据某长江大桥索塔基础工程施工的主要特点,综合考虑4种水中基础围堰方案的优缺点,确定该索塔基础采用锚固柱桩方案;分析现有的钢围堰计算理论,基于钢围堰的施工工艺,研究该长江大桥索塔基础的钢围堰在封底混凝土对围堰侧压力、混凝土及钢围堰重力、钢围堰刃脚摩擦力、抗滑桩及封底混凝土抗剪承载力、流水压力作用下的力学特点,基于各工况的受力特点分别建立力学模型计算公式,构建综合考虑抗滑安全系数及风险后果影响的钢围堰整体抗滑风险模型。研究结果表明:根据《建筑基坑支护技术规程》(JGJ 120-2012)要求,钢围堰在第1,2,3工况时的抗滑安全系数分别为1.607,1.716,4.684,大于规范中1.3要求;该长江大桥在钢围堰施工阶段的总体风险水平为5.6381,风险等级为3级。  相似文献   

17.
以位于某铁路支线公路的L大桥为研究背景,研究内河深水暗流钢围堰施工关键技术.通过有限元建立该大桥钢围堰模型并设定模型条件,对钢板桩、土层相互作用以及河水水位上涨等展开拟合计算.依据水文地质参数及水流压强,计算钢围堰整体自重、静水压力、水浮力、流水压力等,将结果导入有限元模型,以模拟钢围堰施工过程,并清晰展现其中5种危险施工情况.试验结果表明,平衡前与平衡后土层位移最大值分别是8 736 mm、2 661 mm,该情况符合施工条件;钢围堰Y方向最大位移为76 mm,进行抽水与拆除支撑时位移增大,此时应加强施工安全警惕;钢围堰等效应力随静水压力增大而大幅度增加;钢板桩位移与水位成正比,水位上涨初期钢板桩位移与水位未上涨时相差不大,当水位上涨最高期时,钢板桩承受流水压力增大.  相似文献   

18.
围堰作为现代桥梁基坑施工中常见的临时围挡结构被广泛采用,对围堰进行设计研究是确保安全的必要程序。采用PLC桩围堰作为桥墩基础的挡水结构,既增强了锁口钢管桩的止水效果,又能节约钢材、降低施工成本。以海南某景观桥主墩施工时采用的PLC桩围堰为例,对深基坑中的PLC桩围堰进行分析。结合有限元计算方法及理论公式对设计方案进行分析,确保深基坑在施工当中结构的安全性和稳定性。  相似文献   

19.
以重庆某高速公路强风化岩体高陡路堑边坡为依托,运用FLAC3D程序和Mohr-Coulomb准则,从边坡塑性区剪应变、水平位移、稳定安全系数三个方面,对采用坡底增设钢筋混凝土挡墙、锚杆注浆支护+挡墙、挂网喷射混凝土+锚杆注浆支护+挡墙的3种加固方案后边坡的稳定性进行了分析。研究结果表明,采用3种加固方案后,边坡的剪应变和水平位移依次减少,稳定安全系数依次提高,挂网喷射混凝土+锚杆注浆支护+挡墙加固方案的稳定安全系数满足规范要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号