首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sandy sediments in shallow coastal waters of the Baltic Sea are often characterised by large numbers of biogenic structures which are produced by macrozoobenthos species. A series of experiments was devised to quantify how the interaction of such structures with the near-bed flow regime affects the sediment flux. Most experiments were done with simplified replicates of structures generated by typical species commonly found in the Mecklenburg Bight, starting with solitary structures and regularly-spaced arrays in a range of characteristic population densities, followed by a complex benthic macrofauna community, both artificial and alive. A laboratory flume channel, equipped with an acoustic Doppler flow sensor and a topography scanning laser, was used for high-resolution measurements (2 mm horizontal step size and 0.3 mm vertical resolution) of sand erosion (220 µm median grain size, at 20 cm s− 1) and fine particle deposition (8 µm grain size, at 5 cm s− 1). Sediment transport threshold values were measured for each layout. As a rule-of-thumb, both the erosion fluxes and the deposition of suspended matter increased considerably at low population densities (below 2%, expressed as percent of the sediment surface covered, i.e. roughness density RD). Above densities of 4%, erosion almost stopped inside the test arrays, and deposition remained well below the level of unpopulated areas. An attempt to extrapolate these findings to field conditions (using field current velocity data from 2001) showed that the net flux switched from erosion to deposition for densities above 5%. These parameters can now be integrated into a numerical sediment transport model coupling waves, currents, sediment dynamics and biological processes, which is currently under construction at the Baltic Sea Research Institute (IOW), Rostock, Germany.  相似文献   

2.
The main purpose of this investigation was to demonstrate a useful application of the particle image velocimetry (PIV) method to analyze the complex flow characteristics around a ship. For a sample illustration, the KRISO 3600TEU container ship model was chosen. The flow structure in the stern and near-wake region of the model has been investigated experimentally in a circulating water channel. Instantaneous velocity fields measured by the PIV velocity field measurement technique have been ensemble-averaged to give details of flow structures such as the spatial distributions of the local mean velocity, vorticity, and turbulent kinetic energy. The free-stream velocity was fixed at U o = 0.6m/s, and the corresponding Reynolds number based on the length between perpendiculars was about 9.0 × 105. The container ship model shows a complicated three-dimensional flow structure in the stern and near-wake regions. The PIV results clearly revealed the formation of large-scale bilge vortices in the stern region and their effect on the flow in the near-wake. The results shown here provide valuable information for hull form design and the validation of viscous ship flow codes and of turbulence models.  相似文献   

3.
The development of the bed bathymetry of an experimental dumping area was followed over three-and-a-half years by means of multibeam echosounder techniques. Two types of material were discharged in the bight of Mecklenburg in the Baltic Sea in approximately 20 m of water depth. One set of the discharges was 2900 m3 of glacial till and the other set was a 2400 m3 mixture of glacial till, sand and minor amounts of cohesive matter. Only approximately 2500 m3 (86%) of the glacial till and 1500 m3 (63%) of the mixed soil materials were deposited on the seabed. This means that already during the dumping process a considerable part of the sediment material drifted away. The glacial till formed crater-like rings of 30 m diameter with peaks up to 1.4 m above seabed, whereas the spatial structure of the mixed soil material was somewhat more diffuse, but with similar magnitudes in the peaks and troughs.The morphological changes were small and their quantification required a high measuring precision in the order of few cm in the vertical. The dominant processes of surface deformation was flattening of peaks and filling of troughs. The speed of this process decreased with horizontal scale: structures of less than 4 m horizontal extension had a trend to disappear within less than five years, whereas structures of larger than 8 m extension showed little change and are estimated to remain detectable for many decades. In contrast to the reworking of the matter inside the dumping structures, no net transport of material out of the dumping area could be detected. Extrapolating the observed morphological changes into the future it is estimated that without significant decrease in internal shear strength of the disposed till the structures will persist for at least 70 years. This can be attributed to the high internal stability of the dumped glacial till and the low hydrodynamic forces present at the seabed in this region.  相似文献   

4.
Time series measurements of flow and pigment concentrations (Chl) in the Menai Strait have revealed that the strong residual flow in a tidal channel ( 500 m3 s− 1) transports phytoplankton from the open sea into the channel where much of it is consumed by suspension feeders, mainly in commercial beds of Mytilus edulis. The progressive depletion of phytoplankton along the channel results in a strong horizontal gradient of plankton and hence Chl. Tidal displacement of this gradient causes large (± 50% of mean) oscillations of Chl in the vicinity of the mussel beds. Vertical mixing by the strong tidal flows is sufficiently vigorous for most of the tidal cycle to ensure that downward diffusion can resupply the near-bed layer although there are indications of some transient depletion around slack water.This paradigm of the interaction of advection, diffusion and filtration determining the distribution of plankton and its supply to mussels has been encapsulated in a series of simple models forced only by boundary values. In the first, a 1-D model of tidal flow in the channel reproduces the principal features of the observed currents including the unusually large spatial change in phase of the currents and the variation of the residual transport with tidal range. The flow field from this physical model is used to drive a second model based on the advection diffusion equation for Chl with a source at the Irish Sea boundary and a sink over the mussel bed. This model illustrates the formation of a strong Chl gradient along the channel and simulates the amplitude and phase of the M2 oscillations of Chl and the development of the M4 variation apparent in the observations. This second model has been extended to 2-D over the mussel beds to allow investigation of the effects of water column mixing. The model indicates that only for a short period ( 30 min), close to slack water, is mixing sufficiently reduced to permit the development of a depletion boundary layer and then only within  1 m from the bottom, a result which is consistent with the observations.  相似文献   

5.
Three drifters drogued at 65 m were launched on a transect on the Armorican shelf of the Bay of Biscay for 4 years. The experiments were conducted in autumn. They revealed a north-westward, poleward current over the 100 m isobath and a very weak eastward current over depths comprised between 120 and 150 m. A model was used to assess the role of residual tidal currents and wind-induced circulation. The results show that the former are quite weak and the latter do not explain the average velocity of over 10 cm s− 1. It is thought that this current is mainly driven by the density gradient induced by the breakdown of stratification. Hydrological data and satellite images from the period are discussed, in the light of this hypothesis.  相似文献   

6.
We report on an intensive campaign in the summer of 2006 to observe turbulent energy dissipation in the vicinity of a tidal mixing front which separates well mixed and seasonally stratified regimes in the western Irish Sea. The rate of turbulent dissipation ε was observed on a section across the front by a combination of vertical profiles with the FLY dissipation profiler and horizontal profiles by shear sensors mounted on an AUV (Autosub). Mean flow conditions and stratification were obtained from a bed mounted ADCP and a vertical chain of thermistors on a mooring. During an Autosub mission of 60 h, the vehicle, moving at a speed of ~ 1.2 m s− 1, completed 10 useable frontal crossings between end points which were allowed to move with the mean flow. The results were combined with parallel measurements of the vertical profile of ε which were made using FLY for periods of up to 13 h at positions along the Autosub track. The two data sets, which show a satisfactory degree of consistency, were combined to elucidate the space–time variation of dissipation in the frontal zone. Using harmonic analysis, the spatial structure of dissipation was separated from the strong time dependent signal at the M4 tidal frequency to yield a picture of the cross-frontal distribution of energy dissipation. A complementary picture of the frontal velocity field was obtained from a moored ADCP and estimates of the mean velocity derived from the thermal wind using the observed density distribution. which indicated the presence of a strong (0.2 m s− 1) jet-like flow in the high gradient region of the front. Under neap tidal conditions, mean dissipation varied across the section by 3 orders of magnitude exceeding 10− 2 W m− 3 near the seabed in the mixed regime and decreasing to 10− 5 W m− 3. in the strongly stratified interior regime. The spatial pattern of dissipation is consistent in general form with the predictions of models of tidal mixing and does not reflect any strong influence by the frontal jet.  相似文献   

7.
Data from five separate field experiments during 2000–2006 were used to study the internal tidal flow patterns in the Gaoping (formerly spelled Kaoping) Submarine Canyon. The internal tides are large with maximum interface displacements of about 200 m and maximum velocities of over 100cm/s. They are characterized by a first-mode velocity and density structure with zero crossing at about 100 m depth. In the lower layer, the currents increase with increasing depth. The density interface and the along-channel velocity are approximately 90° out-of-phase, suggesting a predominant standing wave pattern. However, partial reflection is indicated as there is a consistent phase advance between sea level and density interface along the canyon axis.  相似文献   

8.
The Mackenzie River is the largest river on the North American side of the Arctic and its huge freshwater and sediment load impacts the Canadian Beaufort Shelf. Huge quantities of sediment and associated organic carbon are transported in the Mackenzie plume into the interior of the Arctic Ocean mainly during the freshet (May to September). Changing climate scenarios portend increased coastal erosion and resuspension that lead to altered river-shelf-slope particle budgets. We measured sedimentation rates, suspended particulate matter (SPM), particle size and settling rates during ice-free conditions in Kugmallit Bay (3–5 m depth). Additionally, measurements of erosion rate, critical shear stress, particle size distribution and resuspension threshold of bottom sediments were examined at four regionally contrasting sites (33–523 m depth) on the Canadian Beaufort Shelf using a new method for assessing sediment erosion. Wind induced resuspension was evidenced by a strong relationship between SPM and wind speed in Kugmallit Bay. Deployment of sediment traps showed decreasing sedimentation rates at sites along an inshore–offshore transect ranging from 5400 to 3700 g m− 2 day− 1. Particle settling rates and size distributions measured using a Perspex settling chamber showed strong relationships between equivalent spherical diameter (ESD) and particle settling rates (r= 0.91). Mean settling rates were 0.72 cm s− 1 with corresponding ESD values of 0.9 mm. Undisturbed sediment cores were exposed to shear stress in an attempt to compare differences in sediment stability across the shelf during September to October 2003. Shear was generated by vertically oscillating a perforated disc at controlled frequencies corresponding to calibrated shear velocity using a piston grid erosion device. Critical (Type I) erosion thresholds (u) varied between 1.1 and 1.3 cm s− 1 with no obvious differences in location. Sediments at the deepest site Amundsen Gulf displayed the highest erosion rates (22–54 g m− 2 min− 1) with resuspended particle sizes ranging from 100 to 930 µm for all sites. There was no indication of biotic influence on sediment stability, although our cores did not display a fluff layer of unconsolidated sediment. Concurrent studies in the delta and shelf region suggest the importance of a nepheloid layer which transports suspended particles to the slope. Continuous cycles of resuspension, deposition, and horizontal advection may intensify with reduction of sea ice in this region. Our measurements coupled with studies of circulation and cross-shelf exchange allow parameterization and modeling of particle dynamics and carbon fluxes under various climate change scenarios.  相似文献   

9.
The river–sea system consisting of the Gaoping (new spelling according to the latest government's directive, formerly spelled Kaoping) River (KPR), shelf, and Submarine Canyon (KPRSC) located off southern Taiwan is an ideal natural laboratory to study the source, pathway, transport, and fate of terrestrial substances. In 2004 during the flood season of the KPR, a system-wide comprehensive field experiment was conducted to investigate particle dynamics from a source-to-sink perspective in the KPRSC with the emphasis on the effect of particle size on the transport, settling, and sedimentation along the pathway. This paper reports the findings from (1) two sediment trap moorings each configured with a Technicap PPS 3/3 sediment trap, and an acoustic current meter (Aquadopp); (2) concurrent hydrographic profiling and water sampling was conducted over 8 h next to the sediment trap moorings; and (3) box-coring in the head region of the submarine canyon near the mooring sites. Particle samples from sediment traps were analyzed for mass fluxes, grain-size composition, total organic carbon (TOC) and nitrogen (TN), organic matter (OM), carbonate, biogenic opal, polycyclic aromatic hydrocarbon (PAH), lithogenic silica and aluminum, and foraminiferal abundance. Samples from box cores were analyzed for grain-size distribution, TOC, particulate organic matter (POM), carbonate, biogenic opal, water content, and 210Pbex. Water samples were filtered through 500, 250, 63, 10 µm sieves and 0.4 µm filter for the suspended sediment concentration of different size-classes.Results show that the river and shelf do not supply all the suspended particles near the canyon floor. The estimated mass flux near the canyon floor exceeds 800 g/m2/day, whose values are 2–7 times higher than those at the upper rim of the canyon. Most of the suspended particles in the canyon are fine-grained (finer than medium silt) lithogenic sediments whose percentages are 90.2% at the upper rim and 93.6% in the deeper part of the canyon.As suspended particles settle through the canyon, their size-composition shows a downward fining trend. The average percentage of clay-to-fine-silt particles (0.4–10 µm) in the water samples increases from 22.7% above the upper rim of the canyon to 56.0% near the bottom of the canyon. Conversely, the average percentage of the sand-sized (> 63 µm) suspended particles decreases downward from 32.0% above the canyon to 12.0% in the deeper part of the canyon. Correspondingly, the substrate of the canyon is composed largely of hemipelagic lithogenic mud. Parallel to this downward fining trend is the downward decrease of concentrations of suspended nonlithogenic substances such as TOC and PAH, despite of their affinity to fine-grained particles.On the surface of the canyon, down-core variables (grain size, 210Pbex activity, TOC, water content) near the head region of the canyon show post-depositional disturbances such as hyperpycnite and turbiditic deposits. These deposits point to the occurrences of erosion and deposition related to high-density flows such as turbidity currents, which might be an important process in submarine canyon sedimentation.  相似文献   

10.
The Polar Front in the Japan/East Sea separates the southern warm water region from the northern cold water region. A merged TOPEX/POSEIDON and ERS-1/2 altimeter dataset and upper water temperature data were used to determine the frontal location and to examine the structure of its interannual variability from 1993 to 2001. The identified frontal location, where sea surface height gradient has a maximum about 10–20 cm over the horizontal distance of 100 km, corresponds well to the maximum subsurface horizontal temperature gradient. The front migrates more widely (36°N–41°N) in the western part of the sea than in the eastern part. The interannual migration induces large variability in upper water temperatures and sea surface height in the western region. Responsible physical mechanisms were studied using a reduced-gravity model. Differences between inflow and outflow change the total volume of warm water, and total warm water volume change in the warm water region uniformly pushes the front in the meridional direction across its mean position in the model simulation. Interannual variation of wind stress causes relatively wide migration of the modeled front in the western part.  相似文献   

11.
We have measured simultaneously the methane (CH4) and carbon dioxide (CO2) surface concentrations and water–air fluxes by floating chambers (FC) in the Petit-Saut Reservoir (French Guiana) and its tidal river (Sinnamary River) downstream of the dam, during the two field experiments in wet (May 2003) and dry season (December 2003). The eddy covariance (EC) technique was also used for CO2 fluxes on the lake. The comparison of fluxes obtained by FC and EC showed little discrepancies mainly due to differences in measurements durations which resulted in different average wind speeds. When comparing the gas transfer velocity (k600) for a given wind speed, both methods gave similar results. On the lake and excluding rainy events, we obtained an exponential relationship between k600 and U10, with a significant intercept at 1.7 cm h− 1, probably due to thermal effects. Gas transfer velocity was also positively related to rainfall rates reaching 26.5 cm h−1 for a rainfall rate of 36 mm h− 1. During a 24-h experiment in dry season, rainfall accounted for as much as 25% of the k600. In the river downstream of the dam, k600 values were 3 to 4 times higher than on the lake, and followed a linear relationship with U10.  相似文献   

12.
Silicon dynamics in the Oder estuary, Baltic Sea   总被引:1,自引:0,他引:1  
Studies on dissolved silicate (DSi) and biogenic silica (BSi) dynamics were carried out in the Oder estuary, Baltic Sea in 2000–2005. The Oder estuary proved to be an important component of the Oder River–Baltic Sea continuum where very intensive seasonal DSi uptake during spring and autumn, but also BSi regeneration during summer take place. Owing to the regeneration process annual DSi patterns in the river and the estuary distinctly differed; the annual patterns of DSi in the estuary showed two maxima and two minima in contrast to one maximum- and one minimum-pattern in the Oder River. DSi concentrations in the river and in the estuary were highest in winter (200–250 μmol dm− 3) and lowest (often less than 1 μmol dm− 3) in spring, concomitant with diatom growth; such low values are known to be limiting for new diatom growth. Secondary DSi summer peaks at the estuary exit exceeded 100 μmol dm− 3, and these maxima were followed by autumn minima coinciding with the autumn diatom bloom. Seasonal peaks in BSi concentrations (ca. 100 μmol dm− 3) occurred during the spring diatom bloom in the Oder River. Mass balance calculations of DSi and BSi showed that DSi + BSi import to the estuary over a two year period was 103.2 kt and that can be compared with the DSi export of 98.5 kt. The difference between these numbers gives room for ca. 2.5 kt BSi to be annually exported to the Baltic Sea. Sediment cores studies point to BSi annual accumulation on the level of 2.5 kt BSi. BSi import to the estuary is on the level of ca. 10.5 kt, thus ca. 5 kt of BSi is annually converted into the DSi, increasing the pool of DSi that leaves the system. BSi concentrations being ca. 2 times higher at the estuary entrance than at its exit remain in a good agreement with the DSi and BSi budgeting presented in the paper.  相似文献   

13.
Ninety-two box cores collected during 2004–2006 from an area of ~ 3000 km2 off the Gaoping (formerly spelled Kaoping) River, SW Taiwan, were analyzed for fallout radionuclides (210Pb, 137Cs and 7Be) to elucidate sedimentation rates and processes, and for the calculation of a sediment budget. The study area is located at an active collision margin with a narrow shelf and a submarine canyon extending essentially into the river's mouth. The results indicate fairly constant hemipelagic sedimentation in much of the open margin and for most of the time except in the inner shelf and along the axis of the canyon where sediment transport is more dynamic and is controlled by tidal current and wave activities constantly, and by fluvial floods or gravity-driven flows episodically. Sedimentation rates in the study area derived from 210Pb and constrained by 137Cs vary from 0.04 to 1.5 cm/yr, with the highest rates (> 1 cm/yr) flanking the Gaoping canyon over the upper slope (200–600 m) and the lowest rates (< 0.1 cm/yr) in the distal basin beyond the continental slope. The depocenter delineated from 210Pb-based sedimentation rates overlaps with the area covered by a flood layer resulting from super-typhoon Haitang in July 2005. Such correspondence supports the notion that the processes operating on event timescale have bearing on the formation of the sediment strata over centennial or longer timescales.From the distribution of sedimentation rates, sediment deposited in the study area annually is estimated to be 6.6 Mton/yr, accounting for less than 20% of Gaoping River's sediment load. The calculated budget, coupled with the presence of the short-lived 7Be and non-steady-state distribution of low levels of 210Pb in sediments along the canyon floor, suggests rapid transport of sediment from Gaoping River's mountainous watershed (the source) via the Gaoping (Kaoping) Submarine Canyon and adjacent channels (as the conduit and temporary sink) to the abyssal plain and the Manila Trench in the South China Sea (the ultimate sink).  相似文献   

14.
With the large deployment, the Array for Real-time Geostrophic Oceanography program has great potential for measuring the ocean currents both on the surface and at mid-depth. However the positioning error of fixes in a trajectory varies from 150 m to 1000 m, and thus created difficulty for accurate estimations of the surface and mid-depth currents. Also the reliability of the estimated surface and mid-depth currents requires accurate error estimations.In this study a new sequential method of Argo float surface trajectory tracking and extrapolating is proposed based on Kalman Filter (KF), under the presumption that a surface trajectory of Argo float is dominated by a constant current plus inertial oscillation. This trajectory tracking and extrapolating method is able to reduce the positioning uncertainties of Argo surface trajectories and provides error estimations. When this method was applied to extrapolate the positions when float resurfacing and descending, the estimation error of the mid-depth currents can be reduced. Utilizing this method in the Pacific, surface and mid-depth currents were estimated from surface trajectories of Argo floats from 2001 to 2004, along with their detailed error estimations. The average error for surface currents is about 4.4 cm s− 1 which is equivalent to the accuracy order (5 cm s− 1) of the Surface Velocity Program drifters. The estimation error of the mid-depth currents at 1000 db is reduced to about 0.21 cm s− 1 without considering the effect of vertical shear.This study shows that the surface trajectory from Argo float provides a new means to measure surface circulations in the global ocean at real time, and that the estimated mid-depth current could be one of the important sources to improve the understanding for ocean dynamic.  相似文献   

15.
Physical disturbance by disposal of dredged materials in estuarine and coastal waters may result in burial of benthic fauna. Survival rates depend on a variety of factors including the type and amount of disposed materials and the lifestyle of the organisms. Laboratory burial experiments using six common macrobenthic invertebrates from a brackish habitat of the western Baltic Sea were performed to test the organisms' escape reaction to dredged material disposal. Experimental lab-results were then extrapolated to a field situation with corresponding bottom topography and covering layer thicknesses at experimental field disposal study sites. Resulted survival rates were then verified by comparison with results of an earlier field study at the same disposal sites.Our experimental design in the lab included the disposal of two types of dredged material (i.e. ‘till’ and ‘sand/till mixture’) and two covering layer depths (i.e. 10–20 cm and 14–40 cm). All three bivalves Arctica islandica (Linnaeus), Macoma balthica (Linnaeus), Mya arenaria (Linnaeus) and the polychaete Nephtys hombergii (Savigny) successfully burrowed to the surface of a 32–41 cm deposited sediment layer of till or sand/till mixture and restored contact with the overlying water. These high escape potentials could partly be explained by the heterogeneous texture of the till and sand/till mixture with ‘voids’. The polychaete Bylgides (Harmothoe) sarsi (Malmgren) successfully burrowed through a 16 cm covering layer whereas the polychaete Lagis koreni (Malmgren) showed almost no escaping reaction. No general differences in escape behaviour after burial were detected between our test species from the brackish habitat and those reported in the literature for the same species in marine environments. However, a size-dependence in mobility of motile polychaetes and M. arenaria was apparent within our study. In comparison to a thick coverage, thin covering layers (i.e. 15–16 cm and 20 cm) increased the chance of the organisms (N. hombergii and M. arenaria) to reach the sediment surface after burial. This was not observed for the other test species. While crawling upward to the new sediment surfaces burrowing velocities of up to 8 cm d− 1 were observed for the bivalves and up to 20 cm d− 1 for N. hombergii. Between 17 and 79% of the test organisms showed burrowing activity after experimental burial. The survival rate (defined as the ability to regained contact with the sediment surface) ranged from 0 to 33%, depending on species and on burial depth. The organisms reached the sediment surface by burrowing (polychaetes and bivalves) and/or by extending their siphons to the new sediment surface (bivalves). The extrapolation of laboratory survival rates to the two disposal sites was obtained based on the in situ thicknesses of the dredged spoil layers measured by multi-beam echo sounder. This resulted in total average survival rate estimates for the test species of 45 and 43% for the two disposal sites. The results obtained during the laboratory tests and the following extrapolation to the field were verified by the range of results from a previous field study, using grab sampling shortly before and after a disposal event in June 2001. The effect of dredged material disposal on the tested Baltic Sea benthic macrofauna was assessed by extrapolating the verified laboratory results to the field.  相似文献   

16.
17.
The Baltic Sea is one of many aquatic ecosystems that show long-term declines in dissolved silicate (DSi) concentrations due to anthropogenic alteration of the biogeochemical Si cycle. Reductions in DSi in aquatic ecosystems have been coupled to hydrological regulation reducing inputs, but also with eutrophication, although the relative significance of both processes remains unknown for the observed reductions in DSi concentrations. Here we combine present and historical data on water column DSi concentrations, together with estimates of present river DSi loads to the Baltic, the load prior to damming together with estimates of the long-term accumulation of BSi in sediments. In addition, a model has been used to evaluate the past, present and future state of the biogeochemical Si cycle in the Baltic Sea. The present day DSi load to the Baltic Sea is 855 ktons y− 1. Hydrological regulation and eutrophication of inland waters can account for a reduction of 420 ktons y− 1 less riverine DSi entering the Baltic Sea today. Using published data on basin-wide accumulation rates we estimate that 1074 ktons y− 1 of biogenic silica (BSi) is accumulating in the sediments, which is 36% higher than earlier estimates from the literature (791 ktons y− 1). The difference is largely due to the high reported sedimentation rates in the Bothnian Sea and the Bothnian Bay. Using river DSi loads and estimated BSi accumulation, our model was not able to estimate water column DSi concentrations as burial estimates exceeded DSi inputs. The model was then used to estimate the BSi burial from measured DSi concentrations and DSi load. The model estimate for the total burial of BSi in all three basins was 620 ktons y− 1, 74% less than estimated from sedimentation rates and sediment BSi concentrations. The model predicted 20% less BSi accumulation in the Baltic Proper and 10% less in the Bothnian Bay than estimated, but with significantly less BSi accumulation in the Bothnian Sea by a factor of 3. The model suggests there is an overestimation of basin-wide sedimentation rates in the Bothnian Bay and the Bothnian Sea. In the Baltic Proper, modelling shows that historical DSi concentrations were 2.6 times higher at the turn of the last century (ca. 1900) than at present. Although the DSi decrease has leveled out and at present there are only restricted areas of the Baltic Sea with limiting DSi concentrations, further declines in DSi concentrations will lead to widespread DSi limitation of diatoms with severe implications for the food web.  相似文献   

18.
Sediment physical properties of the DYNAS study area   总被引:2,自引:0,他引:2  
Physical properties of the deposits in the DYNAS study area, the Mecklenburg Bay, were investigated using sediment echosounders and laboratory analysis were carried out on undisturbed short sediment cores. Wet bulk densities of about 1.2 g/cm3 for mud and up to 1.9 g/cm3 for silty sand were found in surface sediments of the Mecklenburg Bay. Sediment density–depth functions were approximated by logarithmic regression functions at different depth intervals. Sediment consolidation was studied by both (i) consolidation tests of sediment samples and (ii) from the void ratio–overburden pressure relation in natural sediments. Low shear strength values of 9–71 Pa were measured at the mud surface. Downcore, a depth gradient of about 14.5 Pa/cm was calculated. Sediments with high silt and sand contents are characterized by shear strength values of up to 3000 Pa. Published formulas derived from erosion studies were used to calculate the critical shear stress using wet bulk density and shear strength. The obtained results demonstrate clearly, that there is still a wide gap in knowledge about the relationships between erosion parameters and sediment physical properties.  相似文献   

19.
Large-volume sampling of 234Th was conducted to estimate particulate organic carbon (POC) export in conjunction with drifting sediment trap deployments in the northern Barents Sea in July 2003 and May 2005. 234Th-derived POC fluxes averaged 42.3 ± 39.7 mmol C m− 2 d− 1 in 2003 and 47.1 ± 30.6 mmol C m− 2 d− 1 in 2005. Sediment trap POC fluxes averaged 13.1 ± 8.2 mmol C m− 2 d− 1 in 2003 and 17.3 ± 11.4 mmol C m− 2 d− 1 in 2005, but better reflected the transient bloom conditions that were observed at each station within a season. Although 234Th fluxes agreed within a factor 2 at most stations and depths sampled, sediment trap POC fluxes were lower than large-volume POC flux estimates at almost every station. This may represent an under-collection of POC by the drifting sediment traps or, conversely, an over-collection of POC by the large-volume sampling of 234Th. It is hypothesized that the offset between the two methods is partly due to the presence of the prymnesiophyte Phaeocystis pouchetii, which potentially causes a large variation in > 53-μm POC/234Th ratios. Due to the large proportion of dissolved carbon or mucilage released by P. pouchetii, and because it is thought that P. pouchetii does not contribute significantly to the vertical export of biogenic matter in the Barents Sea, the application of large-volume sampling of 234Th may yield relatively high, and possibly inaccurate POC/234Th ratios. Hence, POC fluxes derived from 234Th sampling may be inappropriate and drifting sediment traps might be a more reliable method to measure the vertical export of biogenic matter in regions that have recurrent P. pouchetii blooms, such as the Barents Sea.  相似文献   

20.
Depth profiles of heterotrophic bacteria abundance were measured weekly over a 6-month period from December to May in Franklin Bay, a 230 m-deep coastal Arctic Ocean site of the southeastern Beaufort Sea. Total bacteria, low nucleic acid (LNA) and high nucleic acid (HNA) bacteria abundances were measured using flow cytometry after SYBR Green I staining. The HNA bacteria abundance in surface waters started to increase 5–6 weeks after phytoplankton growth resumed in spring, increasing from 1 × 105 to 3 × 105 cells mL− 1 over an 8-week period, with a net growth rate of 0.018 d− 1. LNA bacteria response was delayed by more than two months relative to the beginning of the phytoplankton biomass accumulation and had a lower net growth rate of 0.013 d− 1. The marked increase in bacterial abundance occurred before any significant increase in organic matter input from river discharge (as indicated by the unchanged surface water salinity and DOC concentrations), and in the absence of water temperature increase. The abundance of bacteria below the halocline was relatively high until January (up to 5 × 105 cells mL− 1) but then decreased to values close to 2 × 105 cells mL− 1. The three-fold bacterial abundance increase observed in surface waters in spring was mostly due to HNA bacteria, supporting the idea that these cells are the most active.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号