首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
在40 000 dwt灵便型散货船设计建造过程中,为了控制船体出现的有害振动,对船体总体振动、上层建筑总体振动及船体艉部局部结构进行了振动预报分析.对船体总体振动和上层建筑总体振动进行分析,避免与主机和螺旋桨激励发生共振;对于船舶艉部结构,重点关注上层建筑各层甲板工作和生活等重要区域的振动情况,采用结构有限元法分析各层甲板的振动特性,设计时通过调整局部结构刚度并保证一定频率储备来避免共振,为船体结构减振设计提供依据.本文给出了设计阶段船舶总体、上层建筑总体及局部结构振动计算分析方法和过程,可对船舶设计者提供有益的参考.  相似文献   

2.
近年来,规范的更新和船东对舒适性要求的提升,船体振动问题愈来愈受到重视。本文采用有限元法从上层建筑整体纵向振动、船体梁总振动、局部结构振动3个方面对某型支线型冷藏集装箱船进行振动特性预报。针对不足的情况,提出改进方案,使振动水平能够满足相关标准的要求,探讨集装箱船早期设计阶段上层建筑整体纵向振动的预报方法。计算分析中获得的经验和结论,可供同类型船舶设计参考。  相似文献   

3.
李艮田 《航海》2011,(4):67-68
现代结构设计中.结构有限元分析越来越多的用来解决实际工程中遇到的各种问题。有限元计算具有很广泛的适用性,主要应用于大型结构的强度分析.振动分析、稳性分析、响应分析、热力学分析等等。船舶设计阶段也大量采用有限元方法分析船体的总纵强度和局部强度。对“威力”号而言,背拉吊耳、锚机基座、吊机基座和船体尾部结构等都采用了有限元方...  相似文献   

4.
近年来,随着对船舶内燃机振动和噪声问题研究的不断深入,由主机引起的船体振动问题正成为各船舶设计部门的研究重点,它是船体的低频振动和水下辐射噪声的主要激励源。为此,本文根据某30 000DWT散货轮建立带有柴油机的船体有限元分析模型,分别对柴油机模型和船体模型进行模态分析,得到其固有特性。基于瞬态动力学方法,利用实测缸内压力数据对柴油机进行振动响应分析,研究主机激励经由机脚、基座传递到船体的传递特性,并且进一步计算分析主机激励船体的振动响应规律,为机、桨、船的匹配设计提供参考。  相似文献   

5.
大型自卸船振动性能预报研究   总被引:10,自引:3,他引:7  
朱胜昌  郭列 《船舶力学》2000,4(2):27-43
本文以对大型自卸船的振动性能预报进行了研究分析,提出了大型自卸船振动性能预报的计算方法,编制了大型自卸船船体振动性能预报程序系统CSSVIB。并通过建立各种计算模型,对七万吨自卸船进行了船体总振动、舱室局部结构振动、机舱底部板架振动和上层建筑振动的计算分析。计算结果表明,七万吨自卸船的振动性能良好,满足振动标准要求。  相似文献   

6.
某油船局部振动分析与优化研究   总被引:1,自引:0,他引:1  
针对船舶设计建造过程中,经常遇到的局部振动问题,结合某油船的结构设计,利用软件,对选取的上层建筑甲板室、尾部结构和机舱等部位的局部结构进行了固有频率的计算,并针对其中出现的频率储备不足等问题,进行了分析和优化研究,通过选择合理的加强方式,提高油船局部结构的固有频率,满足了相应频率储备要求,最终保证了实船良好的振动性能。设计过程中获得的经验和结论,可作为其他项目设计的参考借鉴。  相似文献   

7.
作为深水油田开发勘探装备的新型深水工程勘察船,结构设计必须充分考虑预防结构有害振动的产生,以满足深水勘察的作业要求。采用三维有限元整船建模,对新型深水工程勘察船进行了船体结构的振动计算分析,包括船体总振动、上层建筑、机舱、井架、桅杆、直升机平台等局部结构振动的固有频率计算以及总振动响应预报。分析计算结果对优化船体结构设计提供了必要的技术支撑。  相似文献   

8.
针对局部振动计算中难以确定局部构件的边界条件和全船振动计算成本过大的问题,引入子结构技术。阐述了子结构技术的基本理论,结合子结构和流固耦合技术,对一艘新型散货船进行了局部和全船振动分析预报。在预报过程中,运用流固耦合方法添加外部附连水和油水舱质量,用子结构界面减缩技术确定局部边界条件,进行局部模态分析,运用计算效率成倍提高的部件模态综合法进行总振动预报。最终,提出了横撑及其船体加强的优化方案。该方案能改良主机和船体结构的振动性能,并满足各自的标准要求。  相似文献   

9.
300方耙吸挖泥船振动预报   总被引:1,自引:0,他引:1  
迟少艳  唐丰  洪明 《船舶》2002,(6):29-33
为了在设计阶段有效地控制船体有害振动的出现,根据船舶振动的理论,结合挖泥船激励和结构特点,在方案设计和技术设计阶段对300方耙吸挖泥船主船体总振动分别利用Todd方法和迁移矩阵法进行了预报分析。基于三维空间板梁结构分析模型,用有限元技术对上层建筑甲板局部振动进行了计算,振动主要是通过频率储备来控制,评判标准采用CCS颁布的《船上有害振动的预防》建议值,本文进行的船舶有害振动控制方法可对其他型船设计提供参考。  相似文献   

10.
船体振动响应预报   总被引:18,自引:1,他引:17  
利用有限元技术对船体总振动、上层建筑整体和各层甲板局部自由振动频率及上层建筑振动响应进行了预报。介绍了用于振动计算的单层甲板模型、尾部上层建筑模型、全船模型和简化全船模型及应用实例。研究了上层建筑和船体之间的耦合影响,并根据具体算例对各种模型化方法的效果进行了评价。  相似文献   

11.
研究了分布式振动阻尼器,在理论分析的基础上,对其宽带阻尼放大作用进行了理论计算和多 方案的实验验证,理论计算和模型试验的结果进一步说明了分布式振动阻尼器相对于传统的集中式阻 尼器而言,能大大增加振动能量的耗散,具有进一步减振的优点。  相似文献   

12.
对扭转振动测试装置的发展历史作了简要的介绍,从接触式和非接触式两方面对轴系扭转振动测试技术领域的研究成果进行了阐述,并分析了其优点和缺点。通过对相关测试方法的论述,希望对后续扭转振动测试技术研究起到一定的参考和指导作用。  相似文献   

13.
某船船体模态及振动测试   总被引:1,自引:0,他引:1  
在振动理论与模态参数识别的理论基础上,对某舰艇整体的模态和振动进行测试,并对其动态特性进行评估,得出对工程实际有应用价值的结论,为船舶使用、预防性修理及其动态设计提供参考依据。  相似文献   

14.
陈锡恩  蒋励  章力 《船舶工程》2003,25(6):18-22
以一片单片机为核心,可编程控制器、A/D转换器及辅助电路为支持,用便携机键盘控制轴系双通道的扭振或纵振或回旋振动同步测量及分析,是集成度高,功能完备的轴系振动测量分析仪器。本文介绍了轴系振动测量的原理、方法;仪器的硬件、软件设计及应用实例。  相似文献   

15.
综合考虑立管顺流向及横流向的耦合运动,基于van der Pol理论建立深海顶张力立管涡激振动分析模型,采用有限单元法及Newmark-β法编程求解。利用所建模型对深海实尺寸顶张力钻井立管非锁频工况下的涡激振动响应及参数影响进行分析,结果表明:立管两向均表现为高阶、多模态振动形式,顺流向振动最大峰值频率约为横流向的2倍;相比均匀流,剪切流下立管振动位移及参与振动模态数均增加,立管振动主控模态发生变化;海流流速及顶张力的变化改变了立管振动位移、参与振动模态数及主控模态;随着立管外径增加,立管振动最大峰值频率及参与振动模态数均不断减小,立管振动位移变化较小。  相似文献   

16.
为了进一步分析基座在船舶减振降噪中的作用,根据阻抗失配原理设计建立4种基座模型,并用数值方法对其隔振效果进行研究。隔振效果用外板均方速度级、加速度振级落差和传递率表示,结果表明桁架式基座在低频段具有较好的隔振效果,槽钢减弱了基座在中频段的隔振效果。  相似文献   

17.
针对耙吸挖泥船的振动和噪声危害问题,介绍9 000 m3耙吸挖泥船采取的减振降噪措施。主要包括船体线型的改进,机电设备的减振降噪措施以及避免共振所采取的提高结构刚度的措施等。  相似文献   

18.
冯娜  周欣  侯志鹏 《船舶工程》2021,43(1):56-60
针对某艇主机12缸V型高速柴油机振动过大的问题,开展柴油机动力学分析与振动测试,得到各主要工况下的振动响应。研究结果表明,柴油机振动干扰成分丰富,且分布在很宽的频域上,主要干扰频率为基频的0.5阶、1.0阶及3.0阶,设计时应重点考虑隔振系统刚度与主要干扰阶次的关系。对主机振动过大的原因进行分析,结果表明引起共振的干扰频率、存在激励力或结构局部共振、柴油机结构轻量化及刚性较低是主要影响因素,对柴油机减振设计具有指导意义。  相似文献   

19.
动力吸振器在舰艇电动泵上的减振应用分析   总被引:1,自引:0,他引:1  
文章从理论角度分析带动力吸振器的电动泵振动控制原理,并在此基础上阐述使用与,维修的基本要求,从而为维修工作提供指导。  相似文献   

20.
A semiactive-type absorber for vibration reduction of main hull girders was investigated. The semiactive absorber system includes a moving mass, support springs, dynamic dampers, and a control system. Only a small electrical power supply is needed for control of the damper valve and the operation of the control system. In this paper, the dynamics of the ship's hull and the constraints of the semiactive absorber are described first. Then, a suboptimal operation law is derived based on the properties of the absorber and the theory of optimal vibration reduction. The numerical simulation results show that the semiactive absorber is more efficient in hull vibration reduction than the passive absorber during critical periodical excitation from the propeller. The vibration caused by multifrequency excitation can also be suppressed by the semiactive absorber. In terms of effectiveness, the semiactive absorber is almost as effective as the active absorber. In particular, the performance of the semiactive absorber is excellent in the reduction of high-frequency fluctuations.List of symbols C h (i) damping matrices of the segmenti - C sb structural damping coefficient of bending - C ss structural damping coefficient of shear - C v hydrodynamic damping coefficient - EI flexural rigidity - f a force generated by the absorber - f ad damper force of the semiactive absorber - f ext total excitation force - F ext (i) generalized load vector in segmenti - teÎ the identity matrix - J performance index - J r rotatory moment of inertia - k a stiffness coefficient of the absorber - K h (i) stiffnes matrices of the segmenti - K s A s G s shear rigidity - k v hydrodynamic spring coefficient - l k length of the segmentk - m a mass of the absorber - M ext total exciting moment - M h (i) mass matrices of the segmenti - m v mass moment of inertia - w h deflection of the center line of the hull - W h (i) vertical translation and shear slope of nodes in segmenti - ¯ w d displacement of the absorber mass relative to the hull - ¯ w a absolute displacement of the absorber mass - ¯ w (a, t) absolute upward displacement of the hull atx=a - slope deflection due to bending - slope deflection due to shear - Dirac delta function - k (i) Kronecker delta function - k distribution function - shape function vector  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号