首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
[Objective]This paper aims to establish a dynamic model of a floating raft vibration isolation system with a liquid tank in order to study the mass effect of the liquid medium, tank form, structural stiffness and loading rate on acoustic performance. [Methods]A floating raft system with a cuboidal or cylindrical liquid tank is taken as the research object, and a fluid-structure coupling finite element dynamic model is established. The dynamic force transmission rate and power flow are then used to evaluate the acoustic performance of the system. The influence of the mass effect of the liquid medium, tank form, structural stiffness and loading rate of tank volume on the acoustic performance of the floating raft system are analyzed.[Results]The results show similar laws obtained through the calculation and analysis of the floating raft system with two types of tanks. The structural stiffness of the tank affects the mass effect of the liquid medium in the tank to a certain extent. [Conclusions]If full advantage is to be taken of the liquid mass effect in the tank with a large loading rate to improve the acoustic performance of the floating raft system, the design of the liquid tank and raft structure must have sufficient stiffness. In addition, under the condition that the floating raft structure has sufficient stiffness, its acoustic performance will improve significantly as the tank loading rate increases in the relevant low frequency range. © 2022 Journal of Clinical Hepatology. All rights reserved.  相似文献   

3.
[Objectives] As a new type of pressure-resistant structure, the titanium alloy sandwich cylindrical shell has not yet been studied comprehensively. The topology of the core layer needs to be confirmed using the optimization method. This paper carries out the core topology optimization of titanium alloy pressure-resistant sandwich cylindrical shells.[methods]An unreinforced cylindrical shell with high thickness is selected as the analysis object, and the axisymmetric element is used to calculate the structural stresses via ANSYS. The cylindrical shell is divided into the upper, middle and lower regions along the thickness direction. The structures of the middle region are set as the design variables, and a two-stage topology optimization mathematical model of its core structure is proposed. Based on Matlab, the main control program of the genetic algorithm is established to carry out the core layout optimization of the unreinforced cylindrical shell along the axial direction only and both the axial direction and radial direction respectively.[results]The optimal core topological form consists of equidistant ribs connecting the inner shell and outer shell vertically.[Conclusions]A sandwich cylindrical shell under hydrostatic pressure is a reasonable pressure-resistant structure. © 2023 Authors. All rights reserved.  相似文献   

4.
[Objectives]This paper aims to address the numerical simulation problems of the dynamic response of ships subject to near-, medium- and far-field underwater explosions by establishing several numerical methods and calculation models. [Methods]First, load and fluid-structure interaction models are established on the basis of the Eulerian finite element method and acoustic finite element method using the field-split technique, and FSLAB fluid-structure interaction software is developed. Next, near-, medium- and far-field underwater explosions are numerically simulated respectively. The shock wave propagation law, bubble shape and load evolution characteristics of near free-surface and near-wall underwater explosions are obtained, and the shock response characteristics of a spherical shell and ship subject to far-field underwater explosions are analyzed. Finally, the FSLAB software results are compared with the analytical solutions, reference solutions and experimental data. [Results]The results show that the FSLAB fluid-structure interaction software developed in this paper is effective and accurate in simulating the impact damage of underwater explosions on warships. [Conclusion]This study can provide a basis and support for the power assessment of underwater anti-explosion and shock design of warships. © 2022 Journal of Clinical Hepatology. All rights reserved.  相似文献   

5.
In this paper, a 3D source distribution technique is used to calculate the coupled motions between two ships which advance in the wave with the same speed. The numerical results of coupled motions for a frigate and a supply ship have a good agreement with the experimental results. Based on the 3D coupled motions of two ships, a spectral analysis is employed to clearly observe the effect of speed, clearance and wave heading on the significant relative motion amplitude (SRMA) of two ships.The method presented in this paper will be helpful to select suitable clearance, speed and wave heading for underway replenishment at sea(RAS).  相似文献   

6.
[Objectives]As composite materials have varied internal structures, an in-depth analysis of the damage mechanisms of their component materials can provide a research foundation for the ultimate strength analysis of composite stiffened panels. [Methods]The microscopic, mesoscopic and macroscopic mechanical analyses of marine glass fiber reinforced plastic (GFRP) composite stiffened panels are carried out using a multi-scale approach. Microscopic and mesoscopic representative volume element (RVE) models of chopped strand mat (CSM) and woven roving (WR) materials are established, and the macroscopic equivalent stiffness is obtained by homogenizing the RVE models. The ABAQUS VUMAT subroutine is used to code the progressive damage evolution model of the composite materials to derive the damage evolution mechanism of the microscopic and mesoscopic models respectively. The equivalent strength of macroscopic laminates is also obtained. [Results]The multi-scale approach can be used to accurately evaluate the macroscopic mechanical properties of composite materials, and the ultimate strength of composite stiffened panels is mainly determined by fiber bundle failure. [Conclusions]The obtained macroscopic material parameters can be used to calculate the ultimate strength of composite stiffened panels, while the parametric study of the mesomechanics of composite materials can provide an analysis tool for investigating the influence of material processing technology. © 2023 Chinese Journal of Ship Research. All rights reserved.  相似文献   

7.
[Objective]This study aims to explore the law of the critical compression stress of stiffened panels under the influence of in-plane shear load, and whether in-plane shear load combined with lateral pressure will introduce a strong coupling effect. [Method ] To this end, nonlinear finite element (FE) software ABAQUS is used to perform numerical simulation analysis under combined loads on a group of FE models. A limit state equation/curve is then derived from the dimensionless calculation results based on the minimum square error method. [Results]The results show that the influence law of in-plane shear load on the critical compression stress of stiffened panels is clarified, and a limit state equation of stiffened panels that considers the effect of shear load is obtained. [Conclusion]The limit state equation in this paper can provide references for modifying the ultimate strength of stiffened panels under the influence of in-plane shear load. © 2023 Chinese Journal of Ship Research. All rights reserved.  相似文献   

8.
The bow structure of FPSO moored by the single mooting system is rather complicated. There are many potential hot spots in connection parts of structures between the mooting support frame and the forecastle. Mooting forces, which are induced by wave excitation and transferred by the YOKE and the mooting support frame, may cause fatigue damage to the bow structure. Different from direct wave-induced-forces, the mooting force consists of wave frequency force (WF) and 2nd draft low frequency force (LF) , which are represented by two sets of short-term distribution respectively. Based on two sets of short-term distribution of mooting forces obtained by the model test, the fatigue damage of the bow structure of FPSO is analyzed, with emphasis on two points. One is the procedure and position selection for fatigue check, and the other is the application of new formulae for the calculation of accumulative fatigue damage caused by two sets of short-term distribution of hot spot stress range. From the results distinguished features of fatigue damage to the FPSOs bow structure can be observed.  相似文献   

9.
[Objectives]It is easy to produce buckling distortion when welding thin plate butt joints, which affects the construction period, cost and performance, but this can be controlled by applying external restraints. [Methods ] First, a butt welding test of a thin plate under external restraints is carried out, and the out-of-plane deformation is measured by the optical surface scanning method. At the same time, finite element (FE) models in a free state and external restraint state are established, and the thermal mechanical phenomena of the two models are subjected to thermal-elastic-plastic FE analysis (TEP FE). The influence of different external restraint distributions on the welding buckling distortion of the joints is then studied, and reasons for controlling welding buckling distortion are analyzed from the perspective of longitudinal plastic strain and longitudinal contraction force.[Results ] The out-of-plane deformation of the corresponding model is in good agreement with the measured results, and milder than the out-of-plane deformation of the model in a free state. When external restraints are applied, the longitudinal plastic strain of the weld and its adjacent metal decreases, and the longitudinal contraction force of the thin plate also decreases.[Conclusions ] The results verify that external restraints can effectively control welding buckling distortion, and the control effects are different depending on the external restraint distribution. © 2023 Chinese Journal of Ship Research. All rights reserved.  相似文献   

10.
[Objective]In order to study the dynamic response characteristics and influence laws of a marine gear transmission-propulsion system, a series of bench tests is carried out.[Methods]First, a biaxial gear transmission-propulsion system test bench including a cross connection gear is built. Experiments to test the acceleration response of the gearbox body and propulsion shaft system are then carried out, and the influence of speed, driving mode, axial static thrust, axial dynamic excitation force from the propeller and other factors on the dynamic response characteristics of the system are compared and analyzed. [Results]The experimental results show that the transmission law of the vibration acceleration response of the gear transmission-propulsion system is mainly at the meshing frequency and its multipliers, as well as peaks in the low frequency band of 30–80 Hz under certain working conditions. [Conclusion]This study can provide technical support for the vibration and noise reduction design of gear transmission-propulsion systems. © 2022 Journal of Clinical Hepatology. All rights reserved.  相似文献   

11.
On March 26,2010 an underwater explosion(UWE)led to the sinking of the ROKS Cheonan.The official Multinational Civilian-Military Joint Investigation Group(MCMJIG)report concluded that the cause of the underwater explosion was a 250 kg net explosive weight(NEW)detonation at a depth of 6 9 m from a DPRK"CHT-02D"torpedo.Kim and Gitterman(2012a)determined the NEW and seismic magnitude as 136 kg at a depth of approximately 8m and 2.04,respectively using basic hydrodynamics based on theoretical and experimental methods as well as spectral analysis and seismic methods.The purpose of this study was to clarify the cause of the UWE via more detailed methods using bubble dynamics and simulation of propellers as well as forensic seismology.Regarding the observed bubble pulse period of 0.990 s,0.976 s and 1.030 s were found in case of a 136NEW at a detonation depth of 8 m using the boundary element method(BEM)and 3D bubble shape simulations derived for a 136kg NEW detonation at a depth of 8 m approximately 5 m portside from the hull centerline.Here we show through analytical equations,models and 3D bubble shape simulations that the most probable cause of this underwater explosion was a 136 kg NEW detonation at a depth of 8m attributable to a ROK littoral"land control"mine(LCM).  相似文献   

12.
阻振质量参数对动力舱段隔振性能影响规律研究   总被引:1,自引:0,他引:1  
Rigid blocking masses are located in the typical base structure of a power cabin based on the impedance mismatch principle.By combining the acoustic-structural coupling method and statistical energy analysis,the full-band vibration and sound radiation reduction effect of vibration isolation masses located in a base structure was researched.The influence of the blocking mass’ cross-section size and shape parameters and the layout location of the base isolation performance was discussed.Furthermore,the effectiveness of rigid vibration isolation design of the base structure was validated.The results show that the medium and high frequency vibration and sound radiation of a power cabin are effectively reduced by a blocking mass.Concerning weight increment and section requirement,suitably increasing the blocking mass size and section height and reducing section width can result in an efficiency-cost ratio.  相似文献   

13.
The most critical issue in the steel catenary riser design is to evaluate the fatigue damage in the touchdown zone accurately. Appropriate modeling of the riser-soil resistance in the touchdown zone can lead to significant cost reduction by optimizing design. This paper presents a plasticity model that can be applied to numerically simulate riser-soil interaction and evaluate dynamic responses and the fatigue damage of a steel catenary riser in the touchdown zone. Utilizing the model, numerous riser-soil elements are attached to the steel catenary riser finite elements, in which each simulates local foundation restraint along the riser touchdown zone. The riser-soil interaction plasticity model accounts for the behavior within an allowable combined loading surface. The model will be represented in this paper, allowing simple numerical implementation. More importantly, it can be incorporated within the structural analysis of a steel catenary riser with the finite element method. The applicability of the model is interpreted theoretically and the results are shown through application to an offshore 8.625″ steel catenary riser example. The fatigue analysis results of the liner elastic riser-soil model are also shown. According to the comparison results of the two models, the fatigue life analysis results of the plasticity framework are reasonable and the horizontal effects of the riser-soil interaction can be included.  相似文献   

14.
[Objective]This paper aims to study the characteristics and calculation method of the vibration and sound radiation of single ring-stiffened cylindrical shells with porous fiber composite materials installed in the inner wall under acoustic excitation. [Method ] Based on the equivalent fluid theory model of Johnson–Champoux–Allard (JCA) and the transfer matrix of the multilayer medium, a theoretical formula of the sound absorption coefficient of multilayer sound absorption structures is derived. The three methods for calculating the vibration and sound radiation of a single ring-stiffened cylindrical shell with porous fiber materials under acoustic excitation, namely acoustic solid modeling of porous media, finite element model combined with theoretical formula and imposition of impedance boundary on sound absorption coefficient, are then verified and compared. Finally, the influences of sound-absorbing material's thickness, backed-air gap, static flow resistance, and material arrangement order on the acoustic absorption performance of the cylindrical shell are investigated. [Results]The results show that laying porous fiber composite materials on the cylindrical shell internally can reduce the vibration and acoustic radiation of cylindrical shell structure. The sound absorption coefficient curve can quickly and effectively predict the resulting trend of the vibration and sound radiation of the cylindrical shell. [Conclusion]The acoustic absorption performance of sound absorption structures can be effectively improved through the rational design of their properties and arrangement order of the sound-absorbing materials in order to achieve the purpose of vibration and noise reduction. © 2023 Chinese Journal of Ship Research. All rights reserved.  相似文献   

15.
Based on the traditional Smoothed Particle Hydrodynamics (SPH) algorithm, the linked-list search algorithm combined with the variable smoothing length and square support domain was put forward to improve the calculation efficiency and guarantee the calculation accuracy. The physical process of high velocity fragment impact on a broadside liquid cabin was programmed for simulation. The numerical results agreed well with those of the general software ANSYS AUTODYN, which verifies the effectiveness and feasibility of the numerical method. From the perspective of the outer plate thickness of the liquid cabin, the width of the liquid cabin, and incident angle of the fragment, the influence of these parameters on protective mechanisms was analyzed to provide a basis for protective design of a broadside liquid cabin. Results show that the influence of outer plate thickness is not obvious; therefore, the conventional design can be adopted in the design of the outer plate. The width of the liquid cabin has a great influence on the residual velocity of the fragment and the width of the liquid cabin should be designed to be as wide as possible under the premise of meeting other requirements. There is a certain incident angle in which the velocity attenuation of the fragment is most obvious, and the high-pressure zone near the inner plate is asymmetric. The inner plate of liquid cabin should be strengthened according to the hull form, principal dimensions, and vulnerable points.  相似文献   

16.
[Objectives]To ensure safety and prevent seabed collisions in complex unknown underwater environments, this study proposes a seabed safety domain model and tiered emergency response strategies. [Methods]A vertical motion simulation model is established and verified by surpassing the test results, then used to calculate the active and passive safety domain distance of an autonomous underwater vehicle (AUV), thereby establishing a seabed safety domain model. An AUV emergency control system and emergency strategies are then built on the basis of the dynamic safety domain model. The trim and distance from the seabed of the AUV are used to calculate the current and future risk factors. Based on the weighted sum, the comprehensive risk factor is employed to provide the AUV with emergency response strategies.[Results]Lake tests with the AUV sailing at a fixed depth and height show a strong dependency of the comprehensive risk coefficient on seabed height when it is close to the boundary of the AUV's active safety domain. In the opposite case, there is a weak dependency of the comprehensive risk coefficient on seabed height. The results show that the proposed AUV emergency control system can reduce emergency false alarms caused by frequently changing riverbed heights and sailing altitudes close to the seabed. In such cases, reasonable emergency strategies can be realized under complex rough terrain.[Conclusions]The AUV seabed safety domain model and tiered emergency response strategies based on vertical motion equations proposed herein can be applied to evaluate seabed collision risk in various cases. Finally, this paper provides emergency response strategies to avoid seabed collision accidents, which can enhance the safety of AUV navigation. © 2023 Chinese Journal of Ship Research. All rights reserved.  相似文献   

17.
[Objectives]Aiming at the current situation in which it is difficult to efficiently evaluate protection probability through traditional lightning rod evaluation methods, an efficient numerical evaluation algorithm is developed on the basis of an electrogeometric model (EGM) and attractive volume to realize the efficient calculation of lightning protection probability at any point in space.[Methods]This method first determines the attractive volume boundary of the lightning rod and protection object according to the interception process of the upward and downward leaders. The collection surface and exposure arc of the lightning stroke distance are then calculated, enabling the attractive risk and interception effect of the lightning rod to be quantified. Finally, the attraction and interception characteristics of the lightning rod are integrated to establish a numerical evaluation model of protection probability. To verify the accuracy of this method, the general rule of lightning rod protection probability is analyzed and the results compared with the existing analysis method.[Result]The evaluation results of this method show good agreement with those of classical leader progression model (LPM) theory.[Conclusions] The method proposed herein has a high degree of quantification and can realize the efficient calculation of lightning protection probability at any point in space, which can provide useful references for lightning protection design work. © 2023 Authors. All rights reserved.  相似文献   

18.
Predicting damage to vibration isolators in a raft experiencing heavy shock loadings from explosions is an important task when designing a raft system. It is also vital to be able to research the vulnerability of heavily shocked floating rafts unreliable, especially when the allowable values The conventional approach to prediction has been or ultimate values of vibration isolators of supposedly uniform standard in a raft actually have differing and uncertain values due to defective workmanship. A new model for predicting damage to vibration isolators in a shocked floating raft system is presented in this paper. It is based on a support vector machine(SVM), which uses Artificial Intelligence to characterize complicated nonlinear mapping between the impacting environment and damage to the vibration isolators. The effectiveness of the new method for predicting damage was illustrated by numerical simulations, and shown to be effective when relevant parameters of the model were chosen reasonably. The effect determining parameters, including kernel function and penalty factors, has on prediction results is also discussed. It can be concluded that the SVM will probably become a valid tool to study damage or vulnerability in a shocked raft system.  相似文献   

19.
[Objective]Aiming at the deficiency of the existing line impedance stability network (LISN) in the electromagnetic pulse protection capability, a LISN suitable for the pulse current injection (PCI) test of electrical and electronic equipment is proposed. [Methods]Aiming at the characteristics of high peak value and fast rise of the pulse current in PCI testing, the circuit structure and physical structure of the LISN are improved on the existing basis through PSpice time-domain and frequency-domain simulation combined with engineering design requirements, thereby giving it good nanosecond pulse protection performance and impedance stability at the same time. Pulse current protection performance test and impedance curve test experiments are then designed and carried out.[Results]The experimental results show that the improved LISN can attenuate the injected pulse current by 60 times, while the error of its impedance curve is less than 5% compared with the Type 5 µH LISN in GJB 151B-2013. [Conclusions]The proposed LISN has good impedance stability and decoupling ability, and can be used in the PCI testing of electrical and electronic equipment in order to protect the power supply and improve the repeatability of testing. © 2023 Chinese Journal of Ship Research. All rights reserved.  相似文献   

20.
Numerical simulations of wind turbine blade-tower interaction by using the open source OpenFOAM tools coupled with arbitrary mesh interface(AMI) method were presented.The governing equations were the unsteady Reynolds-averaged Navier-Stokes(RANS) which were solved by the pimpleDyMFoam solver,and the AMI method was employed to handle mesh movements.The National Renewable Energy Laboratory(NREL) phase VI wind turbine in upwind configuration was selected for numerical tests with different incoming wind speeds(5,10,15,and 25 m/s) at a fixed blade pitch and constant rotational speed.Detailed numerical results of vortex structure,time histories of thrust,and pressure distribution on the blade and tower were presented.The findings show that the wind turbine tower has little effect on the whole aerodynamic performance of an upwind wind turbine,while the rotating rotor will induce an obvious cyclic drop in the front pressure of the tower.Also,strong interaction of blade tip vortices with separation from the tower was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号