首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is concerned with finding first-best tolls in static transportation networks with day-to-day variation in network capacity, as accounted for by changes in the volume-delay function. The key question in addressing this problem is that of information, namely, which agents have access to what information when making decisions. In this work, travelers are assumed to be either fully informed about network conditions before embarking on travel, or having no information except the probability distributions; likewise, the network manager (toll-setter) is either able to vary tolls in response to realized network conditions, or must apply the same tolls every day. Further, travelers’ preference for reliable travel is accounted for, representing risk aversion in the face of uncertainty. For each of the scenarios implied by combinations of these assumptions, we present methods to determine system-optimal link prices. A demonstration is provided, using the Sioux Falls test network, suggesting that attempts to incorporate uncertainty into nonresponsive tolls involve significantly higher prices.  相似文献   

2.
This paper investigates evolutionary implementation of congestion pricing schemes to minimize the system cost and time, measured in monetary and time units, respectively, with the travelers’ day-to-day route adjustment behavior and their heterogeneity. The travelers’ heterogeneity is captured by their value-of-times. First, the multi-class flow dynamical system is proposed to model the travelers’ route adjustment behavior in a tolled transportation network with multiple user classes. Then, the stability condition and properties of equilibrium is examined. We further investigate the trajectory control problem via dynamic congestion pricing scheme to derive the system cost, time optimum, and generally, Pareto optimum in the sense of simultaneous minimization of system cost and time. The trajectory control problem is modeled by a differential–algebraic system with the differential sub-system capturing the flow dynamics and the algebraic one capturing the pricing constraint. The explicit Runge–Kutta method is proposed to calculate the dynamic flow trajectories and anonymous link tolls. The method allows the link tolls to be updated with any predetermined periods and forces the system cost and/or time to approach the optimum levels. Both analytical and numerical examples are adopted to examine the efficiency of the method.  相似文献   

3.
A predictive continuum dynamic user-optimal (PDUO-C) model is formulated in this study to investigate the dynamic characteristics of traffic flow and the corresponding route-choice behavior of travelers within a region with a dense urban road network. The modeled region is arbitrary in shape with a single central business district (CBD) and travelers continuously distributed over the region. Within this region, the road network is represented as a continuum and travelers patronize a two-dimensional continuum transportation system to travel to the CBD. The PDUO-C model is solved by a promising solution algorithm that includes elements of the finite volume method (FVM), the finite element method (FEM), and the explicit total variation diminishing Runge-Kutta (TVD-RK) time-stepping method. A numerical example is given to demonstrate the utility of the proposed model and the effectiveness of the solution algorithm in solving this PDUO-C problem.  相似文献   

4.
Traffic congestion is rapidly increasing in urban areas, particularly in mega cities. To date, there exist a few sensor network based systems to address this problem. However, these techniques are not suitable enough in terms of monitoring an entire transportation system and delivering emergency services when needed. These techniques require real-time data and intelligent ways to quickly determine traffic activity from useful information. In addition, these existing systems and websites on city transportation and travel rely on rating scores for different factors (e.g., safety, low crime rate, cleanliness, etc.). These rating scores are not efficient enough to deliver precise information, whereas reviews or tweets are significant, because they help travelers and transportation administrators to know about each aspect of the city. However, it is difficult for travelers to read, and for transportation systems to process, all reviews and tweets to obtain expressive sentiments regarding the needs of the city. The optimum solution for this kind of problem is analyzing the information available on social network platforms and performing sentiment analysis. On the other hand, crisp ontology-based frameworks cannot extract blurred information from tweets and reviews; therefore, they produce inadequate results. In this regard, this paper proposes fuzzy ontology-based sentiment analysis and semantic web rule language (SWRL) rule-based decision-making to monitor transportation activities (accidents, vehicles, street conditions, traffic volume, etc.) and to make a city-feature polarity map for travelers. This system retrieves reviews and tweets related to city features and transportation activities. The feature opinions are extracted from these retrieved data, and then fuzzy ontology is used to determine the transportation and city-feature polarity. A fuzzy ontology and an intelligent system prototype are developed by using Protégé web ontology language (OWL) and Java, respectively. The experimental results show satisfactory improvement in tweet and review analysis and opinion mining.  相似文献   

5.
Jiang et al. (Jiang, Y.Q., Wong, S.C., Ho, H.W., Zhang, P., Liu, R.X., Sumalee, A., 2011. A dynamic traffic assignment model for a continuum transportation system. Transportation Research Part B 45 (2), 343–363) proposed a predictive continuum dynamic user-optimaDUO-l to investigate the dynamic characteristics of traffic flow and the corresponding route-choice behavior of travelers. Their modeled region is a dense urban city that is arbitrary in shape and has a single central business district (CBD). However, we argue that the model is not well posed due to an inconsistency in the route-choice strategy under certain conditions. To overcome this inconsistency, we revisit the PDUO-C problem, and construct an improved path-choice strategy. The improved model consists of a conservation law to govern the density, in which the flow direction is determined by the improved path-choice strategy, and a Hamilton–Jacobi equation to compute the total travel cost. The simultaneous satisfaction of both equations can be treated as a fixed-point problem. A self-adaptive method of successive averages (MSA) is proposed to solve this fixed-point problem. This method can automatically determine the optimal MSA step size using the least squares approach. Numerical examples are used to demonstrate the effectiveness of the model and the solution algorithm.  相似文献   

6.
This paper offers a new look at the network flow dynamics from the viewpoint of physics by demonstrating that the traffic system, in terms of the aggregate effects of human behaviors, may exhibit like a physical system. Specifically, we look into the day-to-day evolution of network flows that arises from travelers’ route choices and their learning behavior on perceived travel costs. We show that the flow dynamics is analogous to a damped oscillatory system. The concepts of energies are introduced, including the potential energy and the kinetic energy. The potential energy, stored in each link, increases with the traffic flow on that link; the kinetic energy, generated by travelers’ day-to-day route swapping, is proportional to the square of the path flow changing speed. The potential and kinetic energies are converted to each other throughout the whole flow evolution, and the total system energy keeps decreasing owing to travelers’ tendency to stay on their current routes, which is analogous to the damping of a physical system. Finally, the system will approach the equilibrium state with minimum total potential energy and zero kinetic energy. We prove the stability of the day-to-day dynamics and provide numerical experiments to elucidate the interesting findings.  相似文献   

7.
Transportation is an important source of greenhouse gas (GHG) emissions. In this paper, we develop a bi-level model for GHG emission charge based on continuous distribution of the value of time (VOT) for travelers. In the bi-level model framework, a policy maker (as the leader) seeks an optimal emission charge scheme, with tolls differentiated across travel modes (e.g., bus, motorcycles, and cars), to achieve a given GHG reduction target by shifting the proportions of travelers taking different modes. In response, travelers (as followers) will adjust their travel modes to minimize their total travel cost. The resulting mode shift, hence the outcome of the emission charge policy, depends on travelers’ VOT distribution. For the solution of the bi-level model, we integrate a differential evolution algorithm for the upper level and the “all or nothing” traffic assignment for the lower level. Numerical results from our analysis suggest important policy implications: (1) in setting the optimal GHG emission charge scheme for the design of transportation GHG emission reduction targets, policy makers need to be equipped with rigorous understanding of travelers’ VOT distribution and the tradeoffs between emission reduction and system efficiency; and (2) the optimal emission charge scheme in a city depends significantly on the average value of travelers’ VOT distribution—the optimal emission charge can be designed and implemented in consistency with rational travel flows. Further sensitivity analysis considering various GHG reduction targets and different VOT distributions indicate that plausible emission toll schemes that encourage travelers to choose greener transportation modes can be explored as an efficient policy instrument for both transportation network performance improvement and GHG reduction.  相似文献   

8.
Nowadays, problems of congestion in urban areas due to the massive usage of cars, last-minute travel needs and progress in information and communication technologies have fostered the rise of new transportation modes such as ridesharing. In a ridesharing service, a car owner shares empty seats of his car with other travelers. Recent ridesharing approaches help to identify interesting meeting points to improve the efficiency of the ridesharing service (i.e., the best pick-up and drop-off points so that the travel cost is competitive for both driver and rider). In particular, ridesharing services, such as Blablacar or Carma, have become a good mobility alternative for users in their daily life. However, this success has come at the cost of user privacy. Indeed in current’s ridesharing services, users are not in control of their own data and have to trust the ridesharing operators with the management of their data.In this paper, we aim at developing a privacy-preserving service to compute meeting points in ridesharing, such that each user remains in control of his location data. More precisely, we propose a decentralized architecture that provides strong security and privacy guarantees without sacrificing the usability of ridesharing services. In particular, our approach protects the privacy of location data of users. Following the privacy-by-design principle, we have integrated existing privacy enhancing technologies and multimodal shortest path algorithms to privately compute mutually interesting meeting points for both drivers and riders in ridesharing. In addition, we have built a prototype implementation of the proposed approach. The experiments, conducted on a real transportation network, have demonstrated that it is possible to reach a trade-off in which both the privacy and utility levels are satisfactory.  相似文献   

9.
Travelers often reserve a buffer time for trips sensitive to arrival time in order to hedge against the uncertainties in a transportation system. To model the effects of such behavior, travelers are assumed to choose routes to minimize the percentile travel time, i.e. the travel time budget that ensures their preferred probability of on-time arrival; in doing so, they drive the system to a percentile user equilibrium (UE), which can be viewed as an extension of the classic Wardrop equilibrium. The stochasticity in the supply of transportation are incorporated by modeling the service flow rate of each road segment as a random variable. Such stochasticity is flow-dependent in the sense that the probability density functions of these random variables, from which the distribution of link travel time are constructed, are specified endogenously with flow-dependent parameters. The percentile route travel time, obtained by directly convolving the link travel time distributions in this paper, is not available in closed form in general and has to be numerically evaluated. To reveal their structural properties, percentile UE solutions are examined in special cases and verified with numerical results. For the general multi-class percentile UE traffic assignment problem, a variational inequality formulation is given and solved using a route-based algorithm. The algorithm makes use of the diagonal elements in the Jacobian of percentile route travel time, which is approximated through recursive convolution. Preliminary numerical experiments indicate that the algorithm is able to achieve highly precise equilibrium solutions.  相似文献   

10.
A new convex optimization framework is developed for the route flow estimation problem from the fusion of vehicle count and cellular network data. The issue of highly underdetermined link flow based methods in transportation networks is investigated, then solved using the proposed concept of cellpaths for cellular network data. With this data-driven approach, our proposed approach is versatile: it is compatible with other data sources, and it is model agnostic and thus compatible with user equilibrium, system-optimum, Stackelberg concepts, and other models. Using a dimensionality reduction scheme, we design a projected gradient algorithm suitable for the proposed route flow estimation problem. The algorithm solves a block isotonic regression problem in the projection step in linear time. The accuracy, computational efficiency, and versatility of the proposed approach are validated on the I-210 corridor near Los Angeles, where we achieve 90% route flow accuracy with 1033 traffic sensors and 1000 cellular towers covering a large network of highways and arterials with more than 20,000 links. In contrast to long-term land use planning applications, we demonstrate the first system to our knowledge that can produce route-level flow estimates suitable for short time horizon prediction and control applications in traffic management. Our system is open source and available for validation and extension.  相似文献   

11.
Suppose that in an urban transportation network there is a specific advanced traveler information system (ATIS) which acts for reducing the drivers' travel time uncertainty through provision of pre‐trip route information. Because of the imperfect information provided, some travelers are not in compliance with the ATIS advice although equipped with the device. We thus divide all travelers into three groups, one group unequipped with ATIS, another group equipped and in compliance with ATIS advice and the third group equipped but without compliance with the advice. Each traveler makes route choice in a logit‐based manner and a stochastic user equilibrium with multiple user classes is reached for every day. In this paper, we propose a model to investigate the evolutions of daily path travel time, daily ATIS compliance rate and yearly ATIS adoption, in which the equilibrium for every day's route choice is kept. The stability of the evolution model is initially analyzed. Numerical results obtained from a test network are presented for demonstrating the model's ability in depicting the day‐to‐day and year‐to‐year evolutions.  相似文献   

12.
This paper studies how link-specific speed limits influence the performance of degradable transport networks, in which the capacity of each link is a degradable random variable. The distribution and cumulative distribution of link travel time have been presented with the effect of speed limits taken into account. The mean and variance of link and route travel time are formulated. Three link states have been classified, and their physical meanings have been discussed. The relationship between critical capacity, travel time and speed limit has been elaborated. We have proposed a Speed Limit- and Reliability-based User Equilibrium (SLRUE), adopting travel time budget as the principle of travelers’ route choice. A heuristic method employing the method of successive averages is developed to solve the SLRUE in degradable networks. Through numerical studies, we find that for some networks both the mean and standard deviation of the total travel time could be reduced simultaneously by imposing some speed limits. The speed limit design problem has been studied, and it is found that imposing speed limits cannot always reduce the total travel time budget of a network.  相似文献   

13.
Major commuting corridors in metropolitan areas generally comprise multiple transportation modes for commuters, such as transit (subways or buses), private vehicles, or park-and-ride combinations. During the morning peak hour, the commuters would choose one of the available transportation modes to travel through the corridors from rural/suburban living areas to urban working areas. This paper introduces a concept of transportation serviceability to evaluate a transportation mode’s service status in a specific link, route, road, or network during a certain period. The serviceability can be measured by the possibility that travelers choose a specific type of transportation service at a certain travel cost. The commuters’ modal-choice possibilities are calculated using a stochastic equilibrium model based on general travel cost. The modeling results illustrate how transportation serviceability is influenced by background traffic flow in a corridor, value of comfort for railway mode, and parking fee distribution.  相似文献   

14.
ABSTRACT

As a strategic factor for a country to survive in the global competition, transportation systems have attracted extensive attention from different disciplines for a long time. Since the introduction of complex network theory in the last decade, however, studies on transport systems have witnessed dramatic progress. Most roads, streets, and rails are organized as a network pattern, while link flows, travel time, or geographical distance are regarded as weights. In this article, the authors will present the current state of topological research on transportation systems under a complex network framework, as well as the efforts and challenges that have been made in the last decade. First, different kinds of transportation systems should be generalized as networks in different ways, which will be explained in the first part of this paper. We follow this by summarizing network measures that describe topological characteristics of transportation networks. Then we discuss the empirical observations from the last decade on real transportation systems at a variety of spatial scales. This paper concludes with some important challenges and open research frontiers in this field.  相似文献   

15.
The advancement of information and communication technology allows the use of more sophisticated information provision strategies for real-time congested traffic management in a congested network. This paper proposes an agent-based optimization modeling framework to provide personalized traffic information for heterogeneous travelers. Based on a space–time network, a time-dependent link flow based integer programming model is first formulated to optimize various information strategies, including elements of where and when to provide the information, to whom the information is given, and what alternative route information should be suggested. The analytical model can be solved efficiently using off-the-shelf commercial solvers for small-scale network. A Lagrangian Relaxation-based heuristic solution approach is developed for medium to large networks via the use of a mesoscopic dynamic traffic simulator.  相似文献   

16.
Abstract

This paper analyzes urban multimodal transportation systems in an aggregated way. To describe the aggregate behavior of traffic in cities, use is made of an idea that is now receiving some attention: the macroscopic fundamental diagram (MFD). We demonstrate through simulation how the MFD can be used to monitor and control a real network, in this case a portion of San Francisco, using readily available input data. We then show how different modes interact on the same network and discuss how these interactions might be incorporated into an MFD for multimodal networks. The work unveils two main results: first, it confirms recent results showing that restricting access to a city's congested areas can improve mobility for all travelers, including those who endure the restrictions; and second, that dedicating street space to collective transport modes can improve accessibility for all modes, even those from which space is taken away.  相似文献   

17.
We study the shared autonomous vehicle (SAV) routing problem while considering congestion. SAVs essentially provide a dial-a-ride service to travelers, but the large number of vehicles involved (tens of thousands of SAVs to replace personal vehicles) results in SAV routing causing significant congestion. We combine the dial-a-ride service constraints with the linear program for system optimal dynamic traffic assignment, resulting in a congestion-aware formulation of the SAV routing problem. Traffic flow is modeled through the link transmission model, an approximate solution to the kinematic wave theory of traffic flow. SAVs interact with travelers at origins and destinations. Due to the large number of vehicles involved, we use a continuous approximation of flow to formulate a linear program. Optimal solutions demonstrate that peak hour demand is likely to have greater waiting and in-vehicle travel times than off-peak demand due to congestion. SAV travel times were only slightly greater than system optimal personal vehicle route choice. In addition, solutions can determine the optimal fleet size to minimize congestion or maximize service.  相似文献   

18.
In this paper, we proposed an evaluation method of exclusive bus lanes (EBLs) in a bi-modal degradable road network with car and bus transit modes. Link travel time with and without EBLs for two modes is analyzed with link stochastic degradation. Furthermore, route general travel costs are formulated with the uncertainty of link travel time for both modes and the uncertainty of waiting time at a bus stop and in-vehicle congestion costs for the bus mode. The uncertainty of bus waiting time is considered to be relevant to the degradation of the front links of the bus line. A bi-modal user equilibrium model incorporating travelers’ risk adverse behavior is proposed for evaluating EBLs. Finally, two numerical examples are used to illustrate how the road degradation level, travelers’ risk aversion level and the front link’s correlation level with the uncertainty of the bus waiting time affect the results of the user equilibrium model with and without EBLs and how the road degradation level affects the optimal EBLs setting scheme. A paradox of EBLs setting is also illustrated where adding one exclusive bus lane may decrease share of bus.  相似文献   

19.
In this paper we introduce new network design problems. A network of potential links is given. Each link can be either constructed or not at a given cost. Also, each constructed link can be constructed either as a one-way or two-way link. The objective is to minimize the total construction and transportation costs. Two different transportation costs are considered: (i) traffic is generated between any pair of nodes and the transportation cost is the total cost for the users and (ii) demand for service is generated at each node and a facility is to be located on a node to satisfy the demand. The transportation cost in this case is the total cost for a round trip from the facility to each node and back. We will consider two options in regard to the links between nodes. They can either be two-way only, or mixed, with both two-way and one-way (in either direction) allowed. When these options are combined with the two objective functions, four basic problems are created. These problems are solved by a descent algorithm, simulated annealing, tabu search, and a genetic algorithm. Extensive computational results are presented.  相似文献   

20.
Planning a public transportation system is a multi-objective problem which includes among others line planning, timetabling, and vehicle scheduling. For each of these planning stages, models are known and advanced solution techniques exist. Some of the models focus on costs, others on passengers’ convenience. Setting up a transportation system is usually done by optimizing each of these stages sequentially.In this paper we argue that instead of optimizing each single step further and further it would be more beneficial to consider the whole process in an integrated way. To this end, we develop and discuss a generic, bi-objective model for integrating line planning, timetabling, and vehicle scheduling. We furthermore propose an eigenmodel which we apply for these three planning stages and show how it can be used for the design of iterative algorithms as heuristics for the integrated problem. The convergence of the resulting iterative approaches is analyzed from a theoretical point of view. Moreover, we propose an agenda for further research in this field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号