首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a transit equilibrium model in which boarding decisions are stochastic. The model incorporates congestion, reflected in higher waiting times at bus stops and increasing in-vehicle travel time. The stochastic behavior of passengers is introduced through a probability for passengers to choose boarding a specific bus of a certain service. The modeling approach generates a stochastic common-lines problem, in which every line has a chance to be chosen by each passenger. The formulation is a generalization of deterministic transit assignment models where passengers are assumed to travel according to shortest hyperpaths. We prove existence of equilibrium in the simplified case of parallel lines (stochastic common-lines problem) and provide a formulation for a more general network problem (stochastic transit equilibrium). The resulting waiting time and network load expressions are validated through simulation. An algorithm to solve the general stochastic transit equilibrium is proposed and applied to a sample network; the algorithm works well and generates consistent results when considering the stochastic nature of the decisions, which motivates the implementation of the methodology on a real-size network case as the next step of this research.  相似文献   

2.
This paper addresses an innovative concept, termed as queuing passengers’ willingness to board (WTB) the transit vehicles. In the peak hours, some queuing passengers cannot board a crowded bus/train, but when the same vehicle arrives at the next stop, some other passengers could still get on. This phenomenon reflects that passengers at different queuing locations have heterogeneous level of ambitions to board. A methodological framework is proposed for the quantitative investigation of WTB. First, a general model is proposed, together with a new least square method (LSM) for the calibration. Then, a parametric model is developed, which is also calibrated by the LSM. To refine the calibration method and deal with the biasness of survey data, a weighted least square method is further developed. Based on real survey data, the calibration results clearly support the existence of WTB, which can be used to estimate the capacity of transit vehicles. This paper also sheds some lights on the practical applications of the quantitative WTB.  相似文献   

3.
This paper proposes a stochastic dynamic transit assignment model with an explicit seat allocation process. The model is applicable to a general transit network. A seat allocation model is proposed to estimate the probability of a passenger waiting at a station or on-board to get a seat. The explicit seating model allows a better differentiation of in-vehicle discomfort experienced by sitting and standing passengers. The paper proposes simulation procedures for calculating the sitting probability of each type of passengers. A heuristic solution algorithm for finding an equilibrium solution of the proposed model is developed and tested. The numerical tests show significant influences of the seat allocation model on equilibrium departure time and route choices of passengers. The proposed model is also applied to evaluate the effects of an advanced public transport information system (APTIS) on travellers’ decision-making.  相似文献   

4.
In this paper, we propose a new schedule-based equilibrium transit assignment model that differentiates the discomfort level experienced by sitting and standing passengers. The notion of seat allocation has not been considered explicitly and analytically in previous schedule-based frameworks. The model assumes that passengers use strategies when traveling from their origin to their destination. When loading a vehicle, standing on-board passengers continuing to the next station have priority to get available seats and waiting passengers are loaded on a First-Come-First-Serve (FCFS) principle. The stimulus of a standing passenger to sit increases with his/her remaining journey length and time already spent on-board. When a vehicle is full, passengers unable to board must wait for the next vehicle to arrive. The equilibrium conditions can be stated as a variational inequality involving a vector-valued function of expected strategy costs. To find a solution, we adopt the method of successive averages (MSA) that generates strategies during each iteration by solving a dynamic program. Numerical results are also reported to show the effects of our model on the travel strategies and departure time choices of passengers.  相似文献   

5.
为解决城市轨道交通车站售票能力冗余导致城市电力资源及地铁公司运营成本闲置的问题,分析普通车站日常客流分布,综合考虑地铁车站售票设备成本和乘客的时间成本因素,建立地铁车站售票设备开启数量优化模型,同时通过排队论和Lingo软件进行计算,获得最优化的地铁车站售票设备开启数量。以郑州地铁农业南路站的日常客流为例,应用地铁车站售票设备开启数量优化模型,计算得到农业南路站售票设备优化方案,通过优化方案进行节能成果分析证明,该方案可有效节约城市电力资源及地铁公司运营成本。  相似文献   

6.
Whilst congestion in automobile traffic increases trip durations, this is often not the case in rail-based public transport where congestion rather leads to in-vehicle crowding, often neglected in empirical studies. Using original survey data from Paris, this article assesses the distribution of comfort costs of congestion in public transport. Estimating willingness to pay for less crowded trips at different levels of in-vehicle passenger density we cannot reject a simple linear relationship between crowding costs and density. We apply our results to the cost-benefit analysis of a recent Parisian public transport project.  相似文献   

7.
In the advent of Advanced Traveler Information Systems (ATIS), the total wait time of passengers for buses may be reduced by disseminating real‐time bus arrival times for the next or series of buses to pre‐trip passengers through various media (e.g., internet, mobile phones, and personal digital assistants). A probabilistic model is desirable and developed in this study, while realistic distributions of bus and passenger arrivals are considered. The disseminated bus arrival time is optimized by minimizing the total wait time incurred by pre‐trip passengers, and its impact to the total wait time under both late and early bus arrival conditions is studied. Relations between the optimal disseminated bus arrival time and major model parameters, such as the mean and standard deviation of arrival times for buses and pre‐trip passengers, are investigated. Analytical results are presented based on Normal and Lognormal distributions of bus arrivals and Gumbel distribution of pre‐trip passenger arrivals at a designated stop. The developed methodology can be practically applied to any arrival distributions of buses and passengers.  相似文献   

8.
This paper proposes a new scheduled-based transit assignment model. Unlike other schedule-based models in the literature, we consider supply uncertainties and assume that users adopt strategies to travel from their origins to their destinations. We present an analytical formulation to ensure that on-board passengers continuing to the next stop have priority and waiting passengers are loaded on a first-come-first-serve basis. We propose an analytical model that captures the stochastic nature of the transit schedules and in-vehicle travel times due to road conditions, incidents, or adverse weather. We adopt a mean variance approach that can consider the covariance of travel time between links in a space–time graph but still lead to a robust transit network loading procedure when optimal strategies are adopted. The proposed model is formulated as a user equilibrium problem and solved by an MSA-type algorithm. Numerical results are reported to show the effects of supply uncertainties on the travel strategies and departure times of passengers.  相似文献   

9.
The fare of a transit line is one of the important decision variables for transit network design. It has been advocated as an efficient means of coordinating the transit passenger flows and of alleviating congestion in the transit network. This paper shows how transit fare can be optimized so as to balance the passenger flow on the transit network and to reduce the overload delays of passengers at transit stops. A bi‐level programming method is developed to optimize the transit fare under line capacity constraints. The upper‐level problem seeks to minimize the total network travel time, while the lower‐level problem is a stochastic user equilibrium transit assignment model with line capacity constraints. A heuristic solution algorithm based on sensitivity analysis is proposed. Numerical example is used to illustrate the application of the proposed model and solution algorithm.  相似文献   

10.
This paper proposes a new formulation for the capacity restraint transit assignment problem with elastic line frequency, in which the line frequency is related to the passenger flows on transit lines. A stochastic user equilibrium transit assignment model with congestion and elastic line frequency is proposed and the equivalent mathematical programming problem is also formulated. Since the passenger waiting time and the line capacity are dependent on the line frequency, a fixed point problem with respect to the line frequency is devised accordingly. The existence of the fixed point problem has been proved. A solution algorithm for the proposed model is presented. Finally, a numerical example is used to illustrate the application of the proposed model and solution algorithm.  相似文献   

11.
This note investigates the important attributes relating to the crowding effects at the Mass Transit Railway (MTR) stations in Hong Kong. Data was collected at two sets of three MTR stations to study the responses of the passengers due to the discomfort at crowded vehicles and platforms. Stated preference surveys were used to study the effects of passenger discomfort measures.  相似文献   

12.
The effects of high passenger density at bus stops, at rail stations, inside buses and trains are diverse. This paper examines the multiple dimensions of passenger crowding related to public transport demand, supply and operations, including effects on operating speed, waiting time, travel time reliability, passengers’ wellbeing, valuation of waiting and in-vehicle time savings, route and bus choice, and optimal levels of frequency, vehicle size and fare. Secondly, crowding externalities are estimated for rail and bus services in Sydney, in order to show the impact of crowding on the estimated value of in-vehicle time savings and demand prediction. Using Multinomial Logit (MNL) and Error Components (EC) models, we show that alternative assumptions concerning the threshold load factor that triggers a crowding externality effect do have an influence on the value of travel time (VTTS) for low occupancy levels (all passengers sitting); however, for high occupancy levels, alternative crowding models estimate similar VTTS. Importantly, if demand for a public transport service is estimated without explicit consideration of crowding as a source of disutility for passengers, demand will be overestimated if the service is designed to have a number of standees beyond a threshold, as analytically shown using a MNL choice model. More research is needed to explore if these findings hold with more complex choice models and in other contexts.  相似文献   

13.
This paper proposes a new activity-based transit assignment model for investigating the scheduling (or timetabling) problem of transit services in multi-modal transit networks. The proposed model can be used to generate the short-term and long-term timetables of multimodal transit lines for transit operations and service planning purposes. The interaction between transit timetables and passenger activity-travel scheduling behaviors is captured by the proposed model, as the activity and travel choices of transit passengers are considered explicitly in terms of departure time choice, activity/trip chain choices, activity duration choice, transit line and mode choices. A heuristic solution algorithm which combines the Hooke–Jeeves method and an iterative supply–demand equilibrium approach is developed to solve the proposed model. Two numerical examples are presented to illustrate the differences between the activity-based approach and the traditional trip-based method, together with comparison on the effects of optimal timetables with even and uneven headways. It is shown that the passenger travel scheduling pattern derived from the activity-based approach is significantly different from that obtained by the trip-based method, and that a demand-sensitive (with uneven headway) timetable is more efficient than an even-headway timetable.  相似文献   

14.
This paper proposes a bi-level model to solve the timetable design problem for an urban rail line. The upper level model aims at determining the headways between trains to minimize total passenger cost, which includes not only the usual perceived travel time cost, but also penalties during travel. With the headways given by the upper level model, passengers’ arrival times at their origin stops are determined by the lower level model, in which the cost-minimizing behavior of each passenger is taken into account. To make the model more realistic, explicit capacity constraints of individual trains are considered. With these constraints, passengers cannot board a full train, but wait in queues for the next coming train. A two-stage genetic algorithm incorporating the method of successive averages is introduced to solve the bi-level model. Two hypothetical examples and a real world case are employed to evaluate the effectiveness of the proposed bi-level model and algorithm. Results show that the bi-level model performs well in reducing total passenger cost, especially in reducing waiting time cost and penalties. And the section loading-rates of trains in the optimized timetable are more balanced than the even-headway timetable. The sensitivity analyses show that passenger’s desired arrival time interval at destination and crowding penalty factor have a high influence on the optimal solution. And with the dispersing of passengers' desired arrival time intervals or the increase of crowding penalty factor, the section loading-rates of trains become more balanced.  相似文献   

15.
This paper presents a dynamic user equilibrium for bus networks where recurrent overcrowding results in queues at stops. The route-choice model embedded in the dynamic assignment explicitly considers common lines and strategies with alternative routes. As such, the shortest hyperpath problem is extended to a dynamic scenario with capacity constraints where the diversion probabilities depend on the time at which the stop is reached and on the expected congestion level at that time. In order to reproduce congestion for all the lines sharing a stop, the Bottleneck Queue Model with time-varying exit capacity, introduced in Meschini et al. (2007), is extended. The above is applied to separate queues for each line in order to satisfy the First-In-First-Out principle within every attractive set, while allowing overtaking among passengers with different attractive sets but queuing single file. The application of the proposed model to a small example network clearly reproduces the formation and dispersion of passenger queues due to capacity constraints and thus motivates the implementation of the methodology on a real-size network case as the next step for future research.  相似文献   

16.
With the continuous expansion of urban rapid transit networks, disruptive incidents—such as station closures, train delays, and mechanical problems—have become more common, causing such problems as threats to passenger safety, delays in service, and so on. More importantly, these disruptions often have ripple effects that spread to other stations and lines. In order to provide better management and plan for emergencies, it has become important to identify such disruptions and evaluate their influence on travel times and delays. This paper proposes a novel approach to achieve these goals. It employs the tap-in and tap-out data on the distribution of passengers from smart cards collected by automated fare collection (AFC) facilities as well as past disruptions within networks. Three characteristic types of abnormal passenger flow are divided and analyzed, comprising (1) “missed” passengers who have left the system, (2) passengers who took detours, and (3) passengers who were delayed but continued their journeys. In addition, the suggested computing method, serving to estimate total delay times, was used to manage these disruptions. Finally, a real-world case study based on the Beijing metro network with the real tap-in and tap-out passenger data is presented.  相似文献   

17.
Waiting time at public transport stops is perceived by passengers to be more onerous than in-vehicle time, hence it strongly influences the attractiveness and use of public transport. Transport models traditionally assume that average waiting times are half the service headway by assuming random passenger arrivals. However, research agree that two distinct passenger behaviour types exist: one group arrives randomly, whereas another group actively tries to minimise their waiting time by arriving in a timely manner at the scheduled departure time. This study proposes a general framework for estimating passenger waiting times which incorporates the arrival patterns of these two groups explicitly, namely by using a mixture distribution consisting of a uniform and a beta distribution. The framework is empirically validated using a large-scale automatic fare collection system from the Greater Copenhagen Area covering metro, suburban, and regional rail stations thereby giving a range of service headways from 2 to 60 min. It was shown that the proposed mixture distribution is superior to other distributions proposed in the literature. This can improve waiting time estimations in public transport models. The results show that even at 5-min headways 43% of passengers arrive in a timely manner to stations when timetables are available. The results bear important policy implications in terms of providing actual timetables, even at high service frequencies, in order for passengers to be able to minimise their waiting times.  相似文献   

18.
Headway control strategies have been proposed as methods for correcting transit service irregularities and thereby reducing passenger wait times at stops. This paper addresses a particular strategy which can be implemented on high frequency routes (headways under 10–12 minutes), in which buses are held at a control stop to a threshold headway. An algorithm is developed which yields the optimal control stop location and optimal threshold headway with respect to a system wait function. The specification of the wait function is based on the development of several empirical models, including a headway variation model and an average delay time model at control stops. A conclusion is reached that the headway variation does not increase linearly along a route, a common assumption made in many previous studies. Furthermore, the location of the optimal control stop and threshold value are sensitive to the passenger boarding profile, as expected. The algorithm itself appears to have practical application to conventional transit operations.  相似文献   

19.
Reliable and accurate short-term subway passenger flow prediction is important for passengers, transit operators, and public agencies. Traditional studies focus on regular demand forecasting and have inherent disadvantages in predicting passenger flows under special events scenarios. These special events may have a disruptive impact on public transportation systems, and should thus be given more attention for proactive management and timely information dissemination. This study proposes a novel multiscale radial basis function (MSRBF) network for forecasting the irregular fluctuation of subway passenger flows. This model is simplified using a matching pursuit orthogonal least squares algorithm through the selection of significant model terms to produce a parsimonious MSRBF model. Combined with transit smart card data, this approach not only exhibits superior predictive performance over prevailing computational intelligence methods for non-regular demand forecasting at least 30 min prior, but also leverages network knowledge to enhance prediction capability and pinpoint vulnerable subway stations for crowd control measures. Three empirical studies with special events in Beijing demonstrate that the proposed algorithm can effectively predict the emergence of passenger flow bursts.  相似文献   

20.
Many transit systems outside North America are characterized by networks with extensively overlapping routes and buses frequently operating at, or close to, capacity. This paper addresses the problem of allocating a fleet of buses between routes in this type of system; a problem that must be solved recurrently by transit planners. A formulation of the problem is developed which recognizes passenger route choice behavior, and seeks to minimize a function of passenger wait time and bus crowding subject to constraints on the number of buses available and the provision of enough capacity on each route to carry all passengers who would select it. An algorithm is developed based on the decomposition of the problem into base allocation and surplus allocation components. The base allocation identifies a feasible solution using an (approx.) minimum number of buses. The surplus allocation is illustrated for the simple objective of minimizing the maximum crowding level on any route. The bus allocation procedure developed in this paper has been applied to part of the Cairo bus system in a completely manual procedure, and is proposed to be the central element of a short-range bus service planning process for that city.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号