首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The aeronautical industry is still under expansion in spite of the problems it is facing due to the increase in oil prices, limited capacity, and novel regulations. The expansion trends translate into problems at different locations within an airport system and are more evident when the resources to cope with the demand are limited or are reaching to theirs limits. In the check-in areas they are appreciated as excessive waiting times which in turn are appreciated by the customers as bad service levels. The article presents a novel methodology that combines an evolutionary algorithm and simulation in order to give the best results taking into account not only the mandatory hard and soft rules determined by the internal policies of an airport terminal but also the quality indicators which are very difficult to include using an abstract representation. The evolutionary algorithm is developed to satisfy the different mandatory restrictions for the allocation problem such as minimum and maximum number of check-in desks per flight, load balance in the check-in islands, opening times of check-in desks and other restrictions imposed by the level of service agreement. Once the solutions are obtained, a second evaluation is performed using a simulation model of the terminal that takes into account the stochastic aspects of the problem such as arriving profiles of the passengers, opening times physical configurations of the facility among other with the objective to determine which allocation is the most efficient in real situations in order to maintain the quality indicators at the desired level.  相似文献   

2.
This paper presents the first analysis on how financial savings arising from energy efficient ships are allocated between owners and those hiring the ships. This as an important undertaking as allocation of financial savings is expected to have an impact on the incentives faced by ship owners to invest in more energy efficient vessels. We focus on the dry bulk Panamax segment as it contributes to around 50 Mt (5%) of total CO2 emissions from shipping in 2007 and therefore its importance in terms of environmental impact should not be neglected. The time charter market represents a classical example of the principal–agent problem similar to the tenant–landlord problem in the buildings sector. We discovered that on average only 40% of the financial savings delivered by energy efficiency accrue to ship owner for the period 2008–2012. The finding that only part of the savings are recouped by shipowners affecting their incentives towards energy efficiency could consequently have implications on the type of emission reduction policies opted at both, global and regional levels.  相似文献   

3.
Resource allocation in transit-based emergency evacuation is studied in this paper. The goal is to find a method for allocation of resources to communities in an evacuation process which is (1) fair, (2) reasonably efficient, and (3) able to dynamically adapt to the changes to the emergency situation. Four variations of the resource allocation problem, namely maximum rate, minimum clearance time, maximum social welfare, and proportional fair resource allocation, are modeled and compared. It is shown that the optimal answer to each problem can be found efficiently. Additionally, a distributed and dynamic algorithm based on the Lagrangian dual approach, called PFD2A, is developed to find the proportional fair allocation of resources and update the evacuation process in real time whenever new information becomes available. Numerical results for a sample scenario are presented.  相似文献   

4.
The problem of pavement maintenance management at the network level is one of maintaining as high a level of serviceability as possible for a pavement network system through reactive and proactive repair actions, whilst optimising the use of available resources. This problem has traditionally been solved using techniques like mathematical programming and heuristic methods. Lately, the use of genetic algorithms (GAs) to solve resource allocation problems like the network pavement maintenance problem has received increased attention from researchers. GAs have been demonstrated to be better than traditional techniques in terms of solution quality and diversity. However, the performance of the GAs is affected by the method used to handle the many constraints present in the formulation of such resource allocation methods. Penalty as well as generate and repair methods are the usual techniques used to handle constraints, but these have their drawbacks in terms of computational efficiency and tendency to get trapped in sub-optimal solution spaces. The paper proposes a third method that is computationally more efficient than the previous methods. The method is based on prioritised allocation of resources to maintenance activities and the maximum utilisation of resources. Constraints on maximum resource availability are no longer used passively to check on solution feasibility (as in the previous methods) but are used to help generate feasible solutions during the resource allocation phase of the algorithm itself. It is demonstrated that the GA with the prioritised resource allocation method (PRAM) outperforms the traditional GA with repair or penalty methods. PRAM was able to consistently outperform the other two GA based methods, both in terms of solution quality as well as computational time. It is concluded that PRAM can be used as the basis of more efficient resource allocation procedures in the area of pavement maintenance management.  相似文献   

5.
The second of a two-part series, this paper derives an efficient solution to the minimal-revenue tolls problem. As introduced in Part I, this problem can be defined as follows: Assuming each trip uses only a path whose generalized cost is smallest, find a set of arc tolls that simultaneously minimizes both average travel time and out-of-pocket cost. As a point of departure, this paper first re-solves the single-origin problem of Part I, modeling it as a linear program. Then with a change of variable, it transforms the LP's dual into a simple longest-path problem on an acyclic network. The multiple-origin problem – where one toll for each arc applies to all origins – solves analogously. In this case, however, the dual becomes an elementary linear multi-commodity max-cost flow problem with an easy bundling constraint and infinite arc capacities. After a minor reformulation that simplifies the model's input to better accommodate output from common traffic assignment software, a solution algorithm is exemplified with a numerical example.  相似文献   

6.
Multi-objective optimization of a road diet network design   总被引:1,自引:0,他引:1  
The present study focuses on the development of a model for the optimal design of a road diet plan within a transportation network, and is based on rigorous mathematical models. In most metropolitan areas, there is insufficient road space to dedicate a portion exclusively for cyclists without negatively affecting existing motorists. Thus, it is crucial to find an efficient way to implement a road diet plan that both maximizes the utility for cyclists and minimizes the negative effect on motorists. A network design problem (NDP), which is usually used to find the best option for providing extra road capacity, is adapted here to derive the best solution for limiting road capacity. The resultant NDP for a road diet (NDPRD) takes a bi-level form. The upper-level problem of the NDPRD is established as one of multi-objective optimization. The lower-level problem accommodates user equilibrium (UE) trip assignment with fixed and variable mode-shares. For the fixed mode-share model, the upper-level problem minimizes the total travel time of both cyclists and motorists. For the variable mode-share model, the upper-level problem includes minimization of both the automobile travel share and the average travel time per unit distance for motorists who keep using automobiles after the implementation of a road diet. A multi-objective genetic algorithm (MOGA) is mobilized to solve the proposed problem. The results of a case study, based on a test network, guarantee a robust approximate Pareto optimal front. The possibility that the proposed methodology could be adopted in the design of a road diet plan in a real transportation network is confirmed.  相似文献   

7.
The rapid growth in air traffic has resulted in increased emission and noise levels in terminal areas, which brings negative environmental impact to surrounding areas. This study aims to optimize terminal area operations by taking into account environmental constraints pertaining to emission and noise. A multi-objective terminal area resource allocation problem is formulated by employing the arrival fix allocation (AFA) problem, while minimizing aircraft holding time, emission, and noise. The NSGA-II algorithm is employed to find the optimal assignment of terminal fixes with given demand input and environmental considerations, by incorporating the continuous descent approach (CDA). A case study of the Shanghai terminal area yields the following results: (1) Compared with existing arrival fix locations and the first-come-first-serve (FCFS) strategy, the AFA reduces emissions by 19.6%, and the areas impacted by noise by 16.4%. AFA and CDA combined reduce the emissions by 28% and noise by 38.1%; (2) Flight delays caused by the imbalance of demand and supply can be reduced by 72% (AFA) and 81% (AFA and CDA) respectively, compared with the FCFS strategy. The study demonstrates the feasibility of the proposed optimization framework to reduce the environmental impact in terminal areas while improving the operational efficiency, as well as its potential to underpin sustainable air traffic management.  相似文献   

8.
Allocating movable resources dynamically enables evacuation management agencies to improve evacuation system performance in both the spatial and temporal dimensions. This study proposes a mixed integer linear program (MILP) model to address the dynamic resource allocation problem for transportation evacuation planning on large-scale networks. The proposed model is built on the earliest arrival flow formulation that significantly reduces problem size. A set of binary variables, specifically, the beginning and the ending time of resource allocation at a location, enable a strong formulation with tight constraints. A solution algorithm is developed to solve for an optimal solution on large-scale network applications by adopting Benders decomposition. In this algorithm, the MILP model is decomposed into two sub-problems. The first sub-problem, called the restricted master problem, identifies a feasible dynamic resource allocation plan. The second sub-problem, called the auxiliary problem, models dynamic traffic assignment in the evacuation network given a resource allocation plan. A numerical study is performed on the Dallas–Fort Worth network. The results show that the Benders decomposition algorithm can solve an optimal solution efficiently on a large-scale network.  相似文献   

9.
Many transit systems outside North America are characterized by networks with extensively overlapping routes and buses frequently operating at, or close to, capacity. This paper addresses the problem of allocating a fleet of buses between routes in this type of system; a problem that must be solved recurrently by transit planners. A formulation of the problem is developed which recognizes passenger route choice behavior, and seeks to minimize a function of passenger wait time and bus crowding subject to constraints on the number of buses available and the provision of enough capacity on each route to carry all passengers who would select it. An algorithm is developed based on the decomposition of the problem into base allocation and surplus allocation components. The base allocation identifies a feasible solution using an (approx.) minimum number of buses. The surplus allocation is illustrated for the simple objective of minimizing the maximum crowding level on any route. The bus allocation procedure developed in this paper has been applied to part of the Cairo bus system in a completely manual procedure, and is proposed to be the central element of a short-range bus service planning process for that city.  相似文献   

10.
This paper proposes a novel method for estimating the perceived value of transit time of containers by shipping lines. The key idea is that a shipping line’s published schedule is the optimal decision that minimizes the sum of fuel cost and time-associated costs of the containers adopted by the shipping line. Using the proposed method, we find that the adopted values of transit time for nine trans-Pacific services operated by Orient Overseas Container Line and five trans-Pacific services operated by Maersk Line are between US$5/TEU/day and US$30/TEU/day. We further demonstrate how the adopted value can be used for designing the optimal transit times between ports, analyzing the viability of slow-steaming, checking whether ships should speed up to catch up to connecting ships on other services, and helping to predict the market share of less polluting fuels in view of rules on air emission.  相似文献   

11.
In this paper we present a solution methodology based on the stochastic branch and bound algorithm to find optimal, or close to optimal, solutions to the stochastic airport runway scheduling problem. The objective of the scheduling problem is to find a sequence of aircraft operations on one or several runways that minimizes the total makespan, given uncertain aircraft availability at the runway. Enhancements to the general stochastic branch and bound algorithm are proposed and we give the specific details pertaining to runway scheduling. We show how the algorithm can be terminated early with solutions that are close to optimal, and investigate the impact of the uncertainty level. The computational experiment indicates that the sequences obtained using the stochastic branch and bound algorithm have, on average, 5–7% shorter makespans than sequences obtained using deterministic sequencing models. In addition, the proposed algorithm is able to solve instances with 14 aircraft using less than 1 min of computation time.  相似文献   

12.
Application of Ant System to network design problem   总被引:4,自引:0,他引:4  
Network design problem (NDP) is the problem of choosing from among a set of alternative projects which optimizes an objective (e.g., minimizes total travel time), while keeping consumption of resources (e.g., budget) within their limits. This problem is difficult to solve, because of its combinatorial nature and nonconvexity of the objective function. Many algorithms are presented to solve the problem more efficiently, while trading-off accuracy with computational speed. This increase in speed stems from certain approximations in the formulation of the problem, decomposition, or heuristics. This study adapts a meta – heuristic approach to solve NDP, namely Ant System (AS). The algorithm is first designed, and then calibrated to solve NDP for the Sioux Falls test network. The behavior of the algorithm is then investigated. The result seems encouraging.  相似文献   

13.
In the expressway network, detectors are installed on the links for detecting the travel time information while the predicted travel time can be provided by the route guidance system (RGS). The speed detector density can be determined to influence flow distributions in such a way that the precision of the travel time information and the social cost of the speed detectors are optimized, provided that each driver chooses the minimum perceived travel time path in response to the predicted travel time information. In this paper, a bilevel programming model is proposed for the network with travel time information provided by the RGS. The lower-level problem is a probit-based traffic assignment model, while the upper-level problem is to determine the speed detector density that minimizes the measured travel time error variance as well as the social cost of the speed detectors. The sensitivity analysis based algorithm is proposed for the bilevel programming problem. Numerical examples are provided to illustrate the applications of the proposed model and of the solution algorithm.  相似文献   

14.
We consider a hub and spoke location problem (HSLP) with multiple scenarios. The HSLP consists of four subproblems: hub location, spoke location, spoke allocation, and customer allocation Under multiple scenarios, we aim to provide a set of well‐distributed solutions, close to the true Pareto optimal solutions, for decision makers. We present a novel multi‐objective symbiotic evolutionary algorithm to solve the HSLP under multiple scenarios. The algorithm is modeled as a two‐leveled structure, which we call the two‐leveled multi‐objective symbiotic evolutionary algorithm (TMSEA). In TMSEA, two main processes imitating symbiotic evolution and endosymbiotic evolution are introduced to promote the diversity and convergence of solutions. The evolutionary components suitable for each sub‐problem are defined. TMSEA is tested on a variety of test‐bed problems and compared with existing multi‐objective evolutionary algorithms. The experimental results show that TMSEA is promising in solution convergence and diversity.  相似文献   

15.
In this paper, we define the online localized resource allocation problem, especially relevant for modeling transportation applications. The problem modeling takes into account simultaneously the geographical location of consumers and resources together with their online nondeterministic appearance. We use urban parking management as an illustration of this problem. In fact, urban parking management is an online localized resource allocation problem, where the question is how to find an efficient allocation of parking spots to drivers, while they all have dynamic geographical positions and appear nondeterministically. We define this problem and propose a multiagent system to solve it. The objective of the system is to decrease, for private vehicles drivers, the parking spots search time. The drivers are organized in communities and share information about spots availability. We have defined two cooperative models and compared them: a fully cooperative model, where agents share all the available information, and a “coopetitive” model, where drivers do not share information about the spot that they have chosen. Results show the superiority of the first model.  相似文献   

16.
Storage space allocation in container terminals   总被引:7,自引:0,他引:7  
Container terminals are essential intermodal interfaces in the global transportation network. Efficient container handling at terminals is important in reducing transportation costs and keeping shipping schedules. In this paper, we study the storage space allocation problem in the storage yards of terminals. This problem is related to all the resources in terminal operations, including quay cranes, yard cranes, storage space, and internal trucks. We solve the problem using a rolling-horizon approach. For each planning horizon, the problem is decomposed into two levels and each level is formulated as a mathematical programming model. At the first level, the total number of containers to be placed in each storage block in each time period of the planning horizon is set to balance two types of workloads among blocks. The second level determines the number of containers associated with each vessel that constitutes the total number of containers in each block in each period, in order to minimize the total distance to transport the containers between their storage blocks and the vessel berthing locations. Numerical runs show that with short computation time the method significantly reduces the workload imbalance in the yard, avoiding possible bottlenecks in terminal operations.  相似文献   

17.
This paper examines a practical tactical liner ship route schedule design problem, which is the determination of the arrival and departure time at each port of call on the ship route. When designing the schedule, the availability of each port in a week, i.e., port time window, is incorporated. As a result, the designed schedule can be applied in practice without or with only minimum revisions. This problem is formulated as a mixed-integer nonlinear nonconvex optimization model. In view of the problem structure, an efficient holistic solution approach is proposed to obtain global optimal solution. The proposed solution method is applied to a trans-Atlantic ship route. The results demonstrate that the port time windows, port handling efficiency, bunker price and unit inventory cost all affect the total cost of a ship route, the optimal number of ships to deploy, and the optimal schedule.  相似文献   

18.
Establishing how to utilize check-in counters at airport passenger terminals efficiently is a major concern facing airport operators and airlines. Inadequate terminal capacity and the inefficient utilization of facilities such as check-in counters are major factors causing congestion and delays at airport passenger terminals. However, such delays and congestion can be reduced by increasing the efficiency of check-in counter operations, based on an understanding of passengers' airport access behaviour. This paper presents an assignment model for check-in counter operations, based on passengers' airport arrival patterns. In setting up the model, passenger surveys are used to determine when passengers arrive at the airport terminals relative to their flight departure times. The model then uses passenger arrival distribution patterns to calculate the most appropriate number of check-in counters and the duration of time that each counter should be operated. This assignment model has been applied at the Seoul Gimpo International Airport in Korea. The model provides not only a practical system for the efficient operations of time-to-time check-in counter assignments, but also a valuable means of developing effective longer-term solutions to the problem of passenger terminal congestion and delays. It also offers airlines a means of operating check-in counters with greater cost effectiveness, thus leading to enhanced customer service.  相似文献   

19.
Efficient transportation of evacuees during an emergency has long been recognized as a challenging issue. This paper investigates emergency evacuation strategies that rely on public transit, where buses run continuously, rather than fixed route, based upon the spatial and temporal information of evacuee needs. We formulated an optimal bus operating strategy that minimizes the exposed casualty time rather than operational cost, as a deterministic mixed‐integer program, and investigated the solution algorithm. A Lagrangian‐relaxation‐based solution algorithm was developed for the proposed model. Numerical experiments with different problem sizes were conducted to evaluate the method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A bicriterion shortest path problem with a general nonadditive cost seeks to optimize a combination of two path costs, one of which is evaluated by a nonlinear function. This paper first identifies a number of emerging transportation applications for which such a shortest path problem might be considered a core subproblem. We propose to first approximate the general nonlinear cost function with a piecewise linear counterpart, and then solve each linear subproblem sequentially. A specialized algorithm is developed to solve the subproblems, which makes use of the efficient path set (or the convex hull) to update upper and lower bounds of the original problem. Conditions under which the solution to a subproblem must belong to the efficient path set are specified. Accordingly, we show that the optimal path must be efficient if the nonlinear cost function is concave. If the optimal path to a subproblem is not efficient, partial path enumeration, implemented using a simple K-shortest path ranking procedure, is conducted to close the gap. The proposed algorithm includes strategies aiming to expedite path enumeration by using upper bounds derived from the efficient path set. Numerical experiments are conducted to demonstrate correctness and effectiveness of the proposed algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号