首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
海湾电厂三维斜压水流和温排水数值模拟   总被引:1,自引:1,他引:0  
考虑海湾地区水体密度分布不均所引起的密度梯度和斜压效应,建立正交曲线坐标下基于σ坐标的三维斜压水流和温排水数学模型。将该模型应用于象山湾内某电厂的温排水运动特性研究,计算所得的潮位和流速与原体观测资料吻合良好,所得温排水的温升范围以排水口为中心,随湾内涨、落潮呈带状分布,排水口近区热分层现象明显,温升分布计算结果与物理模型试验结果趋势一致。  相似文献   

2.
The residual circulation of the Ría de Muros, a large coastal embayment in NW Spain, are studied using a three-dimensional baroclinic finite-difference model. The driving forces considered by the model include the tide, winds, river inflows and density forcing at the open boundary. In situ data of current velocity and direction, water level, wind velocity and direction, river discharge, and temperature and salinity are used for model validation. Simulated and observed time series of water level and current velocity are in good agreement. Once validated, the model is applied to compute the residual circulation induced by the relevant agents of the ría hydrodynamics—the tide, an upwelling-favourable wind characteristic of spring and summer, a downwelling-favourable wind typical of winter, and freshwater inflows associated with high river runoff. The resulting residual circulation differ notably. The tide does not generate significant residual flows except in the inner ría. By contrast, winds and river discharges induce important residual flows throughout; in the middle and outer ría they generate a 3D residual circulation pattern which renders the conventional two-layer scheme of estuarine circulation too simplistic in this case. Thus, this first application of a 3D numerical model to the Ría de Muros sheds new light on its fundamental hydrodynamics.  相似文献   

3.
Three different versions of a baroclinic three-dimensional circulation model of the North Sea are used to obtain information on the wind and density interactions in the North Sea ROFIs (Regions Of Freshwater Influence): the standard version with fully prognostic treatment of salinity and temperature is compared to a barotropic model run on the same grid on the one hand and to an also fully prognostic model run on a four times coarser grid on the other hand. In order to gain knowledge on the wind and density interactions, two opposing wind directions are chosen for investigation, namely a time of strong north wind, 21st–28th April 1982, and a time of strong southwest wind, 22nd–24th May 1982. In the April case the effect of the salinity gradients on the border of the ROFIs of Rhine, Weser, Ems and Elbe, i.e. along the continental shore, is shown to lead to a clear enhancement of the mean surface currents. In May this result is partly disguised by the additional effect of the thermocline in the deeper parts of the North Sea, i.e. in the classical shelf sea regime region. Nevertheless, the same pattern of enhanced mean surface currents along the coast is detected and is of the same order of magnitude as in the April case. It is thus concluded that although the circulation in the North Sea is reversed by the wind, the density induced component of the general circulation is modified only slightly.  相似文献   

4.
A three dimensional hydrodynamic model of the Malin-Hebrides shelf region is used to investigate the spatial variability of the wind and tidally induced residual flow in the region and the influence of flow from the Irish Sea and along the shelf edge. By this means it is possible to understand the spatial variability in the long term observed flow fields in the region and the range of driving forces producing this flow. The model uses a sigma coordinate grid in the vertical with a finer grid in the near surface and near bed shear layers. The vertical diffusion of momentum in the model is parameterised using an eddy viscosity coefficient which is derived from turbulence energy closure models. Two different turbulence models are used to compute the eddy viscosity, namely a two-equation (itq2−q2ℓ) model which has prognostic equations for both turbulence energy and mixing length and a simpler model in which the mixing length is a specified algebraic function of the water depth.The wind induced response to spatially and temporally constant orthogonal wind stresses, namely westerly and southerly winds of 1 N m−2, are derived from the model. By using orthogonal winds and assuming linearity, then to first order the response to any wind direction can be derived. Computed flows show a uniform wind driven surface layer of magnitude about 3% of the wind speed and direction 15 ° to the right of the wind, in deep water. Currents at depth particularly in the shelf edge and near coastal region show significant spatial variability which is related to variations in bottom topography and the coastline.Calculations show that tidal residual flows are only significant in the near coastal regions where the tidal current is strong and exhibits spatial variability. Flow into the region from the Irish Sea through the North Channel although having its greatest influence in the near coastal region, does affect currents near the shelf edge region. Again the spatial variability of the flow is influenced by topographic effects.A detailed examination of wind induced current profiles together with turbulence, mixing length and viscosity, at a number of locations in the model from deep ocean to shallow near coastal, shows that both turbulence models yield comparable results, with the mixing length in the two equation model showing a similar dependence to that specified in the simpler turbulence model.Calculations clearly show that flow along the shelf edge area to the west of Ireland and from the Irish Sea entering the region, together with local wind forcing can have a major effect upon currents along the Malin-Hebrides shelf. The flow fields show significant spatial variability in the region, comparable to those deduced from long term tracer measurements. The spatial variability found in the calculations suggests that a very intense measurement programme together with inflow measurements into the area is required to understand the circulation in the region, and provide data sets suitable for a rigorous model validation.  相似文献   

5.
Microstructure profiling measurements at two locations in the Yellow Sea (a deeper central basin and a local shelf break) were analyzed focusing on tidal and internal-wave induced turbulence near the bottom and in the pycnocline. A classical three-layer density structure consisting of weakly stratified surface and bottom boundary layers and a narrow sharp pycnocline is developed by the end of warm season. Turbulence in the surface layer was not influenced by the tidal forcing but by the diurnal cycle of buoyancy flux and wind forcing at the sea surface. The enhanced dissipation and diffusivity generated by the shear stress at the seafloor was found in the water interior at heights 10–15 m above the bottom with a phase shift of ~ 5–6 m/h. No internal waves, turbulence, or mixing were detected in the pycnocline in the central basin, in contrast to the pycnocline near the local shelf break wherein internal waves of various frequencies were observed all the time. The thickness of the surface layer near the local shelf break slightly exceeded that of the bottom layer (20 vs. 18 m). A 5–6 m high vertical displacement of the pycnocline, which emerged during the low tide, was arguably caused by the passage of an internal soliton of elevation. During this episode, the gradient Richardson number decreased below 0.25 due to enhanced vertical shear, leading to local generation of turbulence with dissipation rates exceeding the background level by an order of magnitude.  相似文献   

6.
Surface current data from drifting buoys and remotely sensed wind data recorded over the continental shelf in the northeastern Gulf of Mexico during the passage of tropical storm Josephine in October 1996 are examined. Drifter data show the existence of a strong surface jet (velocities reaching 1 m s−1) that moves up the west Florida shelf and westward along the Louisiana–Texas shelf, and lasts for nearly 1 week. The coastal jet occurs during an intense synoptic scale wind event where wind speeds reach 15 m s−1. A simple force balance and statistical analysis are performed to assess the role of strong wind forcing. The primary balance shows an Ekman-type current. The role of local acceleration is greatest when winds are directed along bathymetry. A simple two-dimensional strongly forced shelf response model developed from the linear steady-state momentum equations also indicates larger along-shore currents due to both Ekman-type forcing by cross-shore winds and a cross-shore pressure gradient arising from conservation of mass. Model parameters fit empirically are within 15% of theoretical values. The simple model explains 30% and 46% of the variance in the observed along-shore and cross-shore surface currents, respectively.  相似文献   

7.
基于平面曲线坐标系、垂向σ坐标系建立了三维水流数学模型。采用控制体积法离散基本方程、交错网格以避免压力的振荡、动水压力校正法进行数值求解。分别采用经典急弯河段水槽试验资料、土谷塘物理模型试验资料对模型进行了验证。验证结果表明,模型能较好地反映弯曲河段三维水流结构特征和船闸引航道口门区的通航水流条件,可为枢纽船闸工程的平面布置方案论证提供技术支撑。  相似文献   

8.
Three drifters drogued at 65 m were launched on a transect on the Armorican shelf of the Bay of Biscay for 4 years. The experiments were conducted in autumn. They revealed a north-westward, poleward current over the 100 m isobath and a very weak eastward current over depths comprised between 120 and 150 m. A model was used to assess the role of residual tidal currents and wind-induced circulation. The results show that the former are quite weak and the latter do not explain the average velocity of over 10 cm s− 1. It is thought that this current is mainly driven by the density gradient induced by the breakdown of stratification. Hydrological data and satellite images from the period are discussed, in the light of this hypothesis.  相似文献   

9.
This paper presents Prototype Système 2 Global (PSY2G), the first Mercator global Ocean General Circulation Model (OGCM) to assimilate along-track sea level anomaly (SLA) satellite data. Based on a coarse resolution ocean model, this system was developed mainly for climatic purposes and will provide, for example, initial oceanic states for coupled ocean-atmosphere seasonal predictions. It has been operational since 3 September 2003 and produces an analysis and a two-week forecast for the global ocean every week. The PSY2G system uses an incremental assimilation scheme based on the Cooper and Haines [Cooper, M., Haines, K., 1996. Data assimilation with water property conservation. J. Geophys. Res., 101, 1059-1077.] lifting–lowering of isopycnals. The SLA increment is obtained using an optimal interpolation method then the correction is partitioned into baroclinic and barotropic contributions. The baroclinic ocean state correction consists of temperature, salinity and geostrophic velocity increments and the barotropic correction is a barotropic velocity increment. A reanalysis (1993–2003) was carried out that enabled the PSY2G system to perform its first operational cycle. All available SLA data sets (TOPEX/Poséïdon, ERS2, Geosat-Follow-On, Jason1 and Envisat) were assimilated for the 1993–2003 period. The major objective of this study is to assess the reanalysis from both an assimilation and a thermodynamic point of view in order to evaluate its realism, especially in the tropical band which is a key region for climatic studies. Although the system is also able to deliver forecasts, we have mainly focused on analysis. These results are useful because they give an a priori estimation of the qualities and capabilities of the operational ocean analysis system that has been implemented. In particular, the reanalysis identifies some regional biases in sea level variability such as near the Antarctic Circumpolar Current, in the eastern Equatorial Pacific and in the Norwegian Sea (generally less than 1 cm) with a small seasonal cycle. This is attributed to changes in mean circulation and vertical stratification caused by the assimilation methodology. But the model's low resolution, inaccurate physical parameterisations (especially for ocean–ice interactions) and surface atmospheric forcing also contribute to the occurrence of the SLA biases. A detailed analysis of the thermohaline structure of the ocean reveals that the isopycnal lifting–lowering tends to diffuse vertically the main thermocline. The impact on temperature is that the surface layer (0–200 m) becomes cooler whereas in deeper waters (from 500 to 1500 m), the ocean becomes slightly warmer. This is particularly true in the tropics, between 30°N and 30°S. However it can be demonstrated that the assimilation improves the variability in both surface currents and sub-surface temperature in the Equatorial Pacific Ocean.  相似文献   

10.
It is often advantageous to model a semi-enclosed estuarine or coastal embayment (e.g. fish farms or tidal inlets, or typhoon shelters) as a separate system within a larger water body connected to the outer sea. The water quality of the system depends crucially on its flushing time—the average time of a particle in the system. The flushing time is governed by the barotropic and baroclinic tidal exchanges between the system and the outer sea. We describe herein a general method to determine systematically the flushing time of a stratified water body via a numerical tracer experiment. Numerical solution of the 3D flow and mass transport equations for many practical problems show that the tracer mass removal process depends on the physical topography and bathymetry, tidal range and the degree of stratification in the outer sea. Field application suggests that the tracer mass variation can be well approximated by a double-exponential decay curve that can be described by three flushing coefficients. Using a simple analytical two-segment model, the flushing coefficients can be given a clear physical interpretation, and the flushing time can be easily determined in terms of the coefficients. The method is illustrated by application to a number of tidal inlets in Hong Kong, in both the dry and wet season. The connection between the numerically determined flushing time and the traditional bulk flushing time obtained from salt-balance methods is established.  相似文献   

11.
The key features of the western Galician shelf hydrography and dynamics are analyzed on a solid statistical and experimental basis. The results allowed us to gather together information dispersed in previous oceanographic works of the region. Empirical orthogonal functions analysis and a canonical correlation analysis were applied to a high-resolution dataset collected from 47 surveys done on a weekly frequency from May 2001 to May 2002. The main results of these analyses are summarized bellow. Salinity, temperature and the meridional component of the residual current are correlated with the relevant local forcings (the meridional coastal wind component and the continental run-off) and with a remote forcing (the meridional temperature gradient at latitude 37°N). About 80% of the salinity and temperature total variability over the shelf, and 37% of the residual meridional current total variability are explained by two EOFs for each variable. Up to 22% of the temperature total variability and 14% of the residual meridional current total variability is devoted to the set up of cross-shore gradients of the thermohaline properties caused by the wind-induced Ekman transport. Up to 11% and 10%, respectively, is related to the variability of the meridional temperature gradient at the Western Iberian Winter Front. About 30% of the temperature total variability can be explained by the development and erosion of the seasonal thermocline and by the seasonal variability of the thermohaline properties of the central waters. This thermocline presented unexpected low salinity values due to the trapping during spring and summer of the high continental inputs from the River Miño recorded in 2001. The low salinity plumes can be traced on the Galician shelf during almost all the annual cycle; they tend to be extended throughout the entire water column under downwelling conditions and concentrate in the surface layer when upwelling favourable winds blow. Our evidences point to the meridional temperature gradient acting as an important controlling factor of the central waters thermohaline properties and in the development and decay of the Iberian Poleward Current.  相似文献   

12.
Advection schemes for shelf sea models   总被引:1,自引:0,他引:1  
Numerical models of shelf seas must handle sharp gradients in thermoclines and fronts, and at the edges of patches of passive tracer, often in the presence of strong tidal currents, without introducing excessive numerical diffusion or spurious oscillations. In a sigma coordinate model there is an additional problem, since then purely horizontal motion over a sloping sea bed may introduce strong numerical diffusion in the vertical, which can artificially erode thermoclines.In this paper, two advection schemes applicable to shelf sea models are examined. They are based on TVD (Total Variation Diminishing) and PPM (Piecewise Parabolic Method) techniques. They are demonstrated to give satisfactory performance for tracer advection in one, two and three dimensions. They are both monotonic, and the PPM scheme has particularly low numerical diffusion. In two and three dimensions directional splitting is used, which is handled by following advection with each horizontal velocity component by adjustment of the sigma levels in each water column using the same advection scheme. The artificial vertical diffusion is then small, particularly with PPM.The two schemes are also compared in a three-dimensional model of a cylindrical eddy of relatively fresh water, released from rest in an open sea region. Here, both salinity and momentum are advected. Laboratory experiments show that after an initial period of adjustment the eddy should become unstable, with a growth of cyclonic-anticyclonic eddy pairs. This is reproduced in the model, with the PPM scheme again producing sharper results than the TVD scheme.Integrated second moment calculations are used to compare the schemes. These demonstrate the lower numerical diffusion of the PPM scheme. This advantage is achieved at the cost of greater computing time.  相似文献   

13.
The Black Sea general circulation is simulated by a primitive equation model with active free surface. The forcing is seasonally variable and is based on available climatic data. The model reproduces the main features of the Black Sea circulation, including the river discharge effects on the mean sea level and the Bosphorus outflow. Model results show that the simulated sea surface elevation increases in spring over the whole sea, reaching a maximum in the Danube delta area. In the same region, a minimum is observed in winter. The amplitude of the seasonal oscillations (about 8–12 cm over the whole basin) is of the same order of magnitude as the maximum horizontal variations (about 15–18 cm between the coastal areas and the basin interior). This strong signal formed mostly by river discharges, along with the seasonal variability in the other forcing functions and the local dynamics creates a well-pronounced interannual variability. The performance of the model in simulating the seasonal and interannual variability is critically analyzed, with a special attention on the cold intermediate water formation and the circulation in the upper 150 m. The simulations demonstrate that the source of intermediate waters is on the shelf, and that the water mass in the core of cold intermediate layer changes with time as a response to the periodic forcing at sea surface. This type of variability is characterized by pronounced interannual changes, proving that important differences could exist between water mass structure in different years, even when using identical atmospheric forcings each year.  相似文献   

14.
The general trend in ecosystem modelling is to improve the spatial resolution by shifting from rough box-models to fine 3D models. Despite the continuous speeding-up of computing, 3D models involving numerous state variables may remain intractable, especially for parameter calibration, when processes with long half-life periods (i.e, from years to decades) are introduced, such as the behaviour of organic matter in sediment and population dynamics of benthic species. In these cases, a first approach can be provided by fast-running box-models, if they take into account the most crucial hydrodynamic properties of the system. In a macrotidal shelf sea such as the English Channel, the long-term horizontal transport can be summarized by the tidal residual circulation, and the vertical stratification can be sketched by a two- or three-layered integral model.This paper compares the results obtained in the English Channel area by the same biogeochemical equations of pelagic primary production, coupled to 1) a two-layered box-model 2) a three-layered box-model (i.e., with an intermediate cline layer between surface and bottom ones) and 3) a fine-gridded 3D model. Comparison is focused firstly on thermal stratification and summer dinoflagellate blooms in the north-western Channel and secondly on the haline stratification and the sequence of blooms obtained in the eutrophicated Seine river plume. Comparison shows that box-models act as low-pass filters which reproduce correctly the weekly mean time-course, but greatly reduce the variance locally observed in a tide-oscillating plume region. As far as global characteristics are concerned, such as the annual primary production, or the percentage of variation in annual production after reducing the nutrient loadings, the box and 3D models gave very similar results. This conclusion reinforces the usefulness of using box-models as a first approach in long-term processes, for which a long transient phase is expected before reaching the annual periodic solution.  相似文献   

15.
为满足螺旋桨设计效率和现代制造的精度要求, 提出一种快速生成MAU 型螺旋桨三维模型的方法。采用MATLAB@编程语言, 依据螺旋桨二维制图的投影关系和螺旋桨设计参数,计算出螺旋桨桨叶叶面特征点的空间笛卡尔坐标值,将笛卡尔坐标值导入SOLIDWORKS@中进行螺旋桨三维建模以及桨叶曲面的实体优化。在CFD流体仿真软件CFX中建立基于RANS方程的标准k-湍流模型,采用多重参考系MRF技术模拟在不同进速系数时的螺旋桨水动力性能如推力系数、转矩系数和敞水效率。同时, 数值模拟也显示出了螺旋桨桨叶上及整个流域内的速度、压力和流线分布情况。  相似文献   

16.
This paper outlines an approach to complex spatio-temporal marine ecosystem modelling as applied to the North Western European Continental Shelf. The model presented here combines an eddy-permitting (approximately 6 km horizontal resolution) baroclinic model, the Proudman Oceanographic Laboratory Coastal Ocean Modelling System (POLCOMS), with the European Regional Seas Ecosystem Model (ERSEM). This has been run within an operational framework using operationally available high resolution atmospheric and lateral boundary forcing, allowing hindcast and near-real time nowcast simulations to be performed. The modelled surface temperature and chlorophyll distributions are presented, and interannual variations discussed. Validation of both the physical and ecosystem submodels show the system to be effective, whilst highlighting areas where improvements in the system can be made. Distinct regional differences in predictive skill are shown. The system presented is ready for operational implementation to provide products and services for use both scientifically and in coastal zone and shelf seas management activities. A programme of work to update the system is already in place.  相似文献   

17.
We have investigated the barotropic tides in the Tunisian shelf and the Strait of Sicily using the Regional Ocean Modelling System (ROMS) with very high-resolution. Model performance was evaluated with respect to tide gauge, satellite data, and current meter measurements. The model fields faithfully reproduced the major feature of the barotropic tidal currents and agreed well with existing tidal elevation and phase observations. General features for the various semidiurnal constituents are nearly similar to each other with maximum amplitude in the Gulf of Gabes. The larger tidal currents occur over the continental shelves. In the Adventure Bank, the current is essentially of diurnal type whereas in the Gulf of Gabes it is of semidiurnal type.Tidal energy lost, which is primarily due to bottom stress dissipation, is predominantly in the Gulf of Gabes ( 61%), the Strait of Sicily, and the Strait of Messina. The forcing function for internal tides shows for both M2 and K1 constituents, significant spatial variability in the Strait of Sicily. This suggests that some internal tides will be generated in these regions and could thus explain the observed strong diurnal internal waves in the Adventure Bank.  相似文献   

18.
With tidal data from the literature and the field, a two-dimensional (depth-averaged) numerical model was formulated to simulate the dominant semi-diurnal tidal hydrodynamics of the Central Great Barrier Reef continental shelf. Importantly, the individual mesh dimensions of the numerical scheme were set at approximately 2 × 2 km which was sufficient resolution to incorporate the topography of each reef within the matrix. The model provided a new detailed understanding of the influence of the reef matrix on the tidal currents of the outer shelf. In particular, the model demonstrated that the spatial variability in the tidal current's speed and direction exists down to the scale of the 2 km grid size. The model also demonstrated the significant tidally-induced residual currents that result from the interaction with the complex topography of the reef matrix. The advective effect of these tidal currents would be significant as the tidally-induced residual currents are of similar magnitude to the non-tidal currents of the region. Further, the spatial variability in the modelled and observed tidal currents suggests highly spatially variable advective processes operate within the reef waters.  相似文献   

19.
A one-dimensional (1D) coupled physical–microbiological model has been applied to a site in the central North Sea. The impact of the choice of the turbulence closure scheme on the modelling the primary production has been investigated.The model was run with four different parameterisations of vertical mixing of heat, momentum and dissolved and suspended matters, using M2 tidal forcing and the hourly mean meteorological forcing of 1989 to reproduce the annual thermal structure and primary production. The four mixing parameterisations are: Level 2 turbulence closure scheme [Mellor, G.L., Yamada, T., 1974. A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci. 31, 1791–1806; Mellor, G.L., Yamada, T., 1982. Development of a turbulence closure model for geophysical Fluid problems. Rev. Geophys. Space Phys. 20 (4) 851–875] using an explicit numerical scheme [Sharples, J., Tett, P., 1994. Modelling the effect of physical variability on the midwater chlorophyll maximum. J. Mar. Res. 52, 219–238]; a version of the Level 2.5 turbulence closure scheme [Galperin, B., Kantha, L.H., Hassid, S., Rosati, A., 1988. A quasi-equilibrium turbulent energy model for geophysical flows. J. Atmos. Sci. 45, 55–62; Ruddick, K.G., Deleersnijder, E., Luyten, P.J., Ozer, J., 1995. Haline stratification in the rhine/meuse freshwater plume: a 3D model sensitivity analysis. Cont. Shelf Res. 15 (13) 1597–1630] simplified to use an algebraic mixing length by Sharples and Simpson [Sharples, J., Simpson, J.H., 1995. Semidiurnal and longer period stability cycles in the Liverpool Bay region of freshwater influence. Cont. Shelf Res. 15, 295–313], also solved explicitly; the same simplified L2.5 scheme with an implicit numerical solution and modified vertical discretisation scheme [Annan, J.D., 1999. Numerical methods for the solution of the turbulence energy equations in the shelf seas. Int. J. Numer. Methods Fluids 29, 193–206]; and another version of the same scheme (but using a different algebraic mixing length) as described by Xing and Davies [Xing, J., Davies, A.M., 1996a. Application of turbulence energy models to the computation of tidal currents and mixing intensities in the shelf edge regions. J. Phys. Oceanogr. 26, 417–447; Xing, J., Davies, A.M., 1996b. Application of a range of turbulence models to the computation of tidal currents and mixing intensities in shelf edge regions. Cont. Shelf. Res. 16, 517–547; Xing, J., Davies, A.M., 1998. Application of a range of turbulence energy models to the computation of the internal tide. Int. J. Numer. Methods Fluids 26, 1055–1084]. Various model outputs at the sea surface and in depth profiles have been compared with data collected in 1989 as part of the North Sea Project [Huthnance, J.M., 1990. Progress on North Sea Project. NERC News, vol. 12, pp. 25–29, UK]. It is shown that the biological results are extremely sensitive to the small changes in the physical conditions, which arise due to the different turbulence schemes tested. The timing of the spring bloom and the maintenance of the midwater chlorophyll maximum all differ greatly between model runs, and the gross primary production varies by a factor of two from the highest to lowest results. The simplified Level 2.5 scheme, implemented using the numerical methods of Annan [Annan, J.D., 1999. Numerical methods for the solution of the turbulence energy equations in the shelf seas. Int. J. Numer. Methods Fluids 29, 193–206], produces results, which give the best agreement with the available data.  相似文献   

20.
基于物理量守恒的有限体积法,建立了三维粘性泥沙运动及回淤数学模型。平面采用无结构三角形网格划分计算区域、拟合复杂海岸边界,垂向采用坐标变换技术,适应不平坦海底地形。以天津港港内泥沙回淤为例,模拟三维粘性泥沙的输运过程,得出了港内垂向分层潮流流场、垂向含沙量变化、淤积历程及淤积分布。结合实测地形资料对模型进行验证,为研究三维泥沙运动特性提供了一种新的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号