首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高速列车铸铝合金齿轮箱在服役过程中承受复杂的载荷条件和随机应力。以某新型高速列车齿轮箱为研究对象,结合线路试验分析列车运行速度、电机输出扭矩及线路条件对箱体动应力响应及疲劳强度的影响,利用应力—强度干涉理论建立齿轮箱等效应力—疲劳强度干涉可靠性模型,分析齿轮箱箱体疲劳可靠度与服役里程的关系。结果表明:随着列车运行速度和电机输出扭矩的增大,箱体各测点的应力水平均有不同程度的增大,其中端部吊杆座处的应力变化最为明显;当列车运行速度由200km·h-1增加到400km·h-1时,其最大动应力幅值增大约120%,电机输出扭矩由0变为1400N·m时最大动应力幅值增大约150%。此外,线路条件对箱体等效应力也影响显著。随着列车服役里程的增加,箱体疲劳可靠度不断降低,在一定可靠度下,随着铝合金箱体铸造水平等级的提高,齿轮箱箱体寿命延长,铸造孔径为0.5mm时的服役里程是铸造孔径为0.9mm时的3.8倍。  相似文献   

2.
应用一维可压缩非定常不等熵流动模型和广义黎曼变量特征线法,研究时速600 km等级高速磁浮列车交会时隧道内压力峰值的分布规律,分析隧道长度、隧道净空面积、列车运行速度和列车长度对列车交会时隧道内压力峰值的影响规律。结果表明:隧道中央测点的压力波动最剧烈,压力峰值以隧道中央位置为中心点往隧道2侧对称分布;列车运行速度为400~650 km·h~(-1)、列车编组为3~10辆时,基于隧道内压力峰值的最不利隧道长度在160~1 000 m范围;隧道内压力峰值均随隧道净空面积增加而减小,随列车运行速度的增大而急剧增大,列车长度对其基本无影响;拟合发现隧道内压力峰值与隧道净空面积约-1.1~-1.4次幂成正比,与列车运行速度约2.0~3.8次幂成正比;当采用现有350 km·h~(-1)等级高速铁路双线隧道净空面积标准,并且2列列车以600 km·h~(-1)交会时,隧道内压力峰值高达±30 kPa,必须增大隧道净空面积或增设竖井等减压设施以满足ERRI医学健康标准。  相似文献   

3.
以某型高速列车齿轮箱为研究对象,针对其运行过程中复杂的内部流场进行仿真分析。建立简化齿轮箱油润滑三维模型,进行流场仿真。获得稳定运行后箱体内部不同瞬时的压力和速度,揭示齿轮箱正常工作时内部流体的分布及变化规律。研究结果表明:齿轮箱内部压强随着运行速度增大而增大,最大压强出现在齿轮即将啮合的位置,速度随时间波动最后趋于平稳,最大速度出现在旋转齿轮的齿顶附近。  相似文献   

4.
文章从理论上分析齿轮箱内各热源发热量的大小,以及发热量与齿轮箱运行工况间的关系。研究表明齿轮箱的热量来源主要来自搅油损失及轴承的功率损失,搅油损失随着转速的增大而增大,随着温度的增大而减小;轴承的功率损失随着转速的增大而增大,随着润滑油温度的增大先增大后减小,但润滑油温度对轴承功率损失影响不大。  相似文献   

5.
针对高速列车通过短隧道群所引起的空气动力学效应问题,利用计算流体力学软件Fluent进行了仿真分析。对列车以不同时速通过不同间距的短隧道群时车体表面及隧道中断面的受力情况进行了研究。结果表明:列车通过短隧道群时车体表面最大负压比通过单隧道时大131%,出现在隧道间距与列车长度相当时;随着速度的增大,车体表面的压力变化幅值增大,且车体表面的压力幅值近似与列车运行速度的平方成正比;列车通过短隧道群第1座隧道时隧道中断面压力变化幅值与通过单隧道时接近,通过第2座及第3座隧道时隧道中断面的压力幅值比通过单隧道时增大,且在隧道间距25~100 m时压力幅值随隧道间距增加而增大。  相似文献   

6.
为了探索隧道拱顶二次衬砌背后不同范围内存在空洞条件下高速列车气动荷载对隧道二次衬砌结构的影响,采用隧道空气动力学的流体力学分析方法及结构力学分析方法,对二次衬砌结构的受力进行研究。研究结果表明:在气动荷载作用下,隧道二次衬砌结构处于"拉—压"的循环受力状态中;在隧道拱顶二次衬砌背后存在空洞时,衬砌结构上产生的瞬态应力变化规律与其受到的气动荷载变化规律一致,当列车运行速度为350km·h-1时,二次衬砌结构上产生的最大瞬态应力是同一时刻气动荷载的约39倍;在最大正峰值气动荷载作用下,随着拱顶二次衬砌背后空洞范围的增大,拉应力范围逐渐变小,拉应力值先增大后减小;在最大负峰值气动荷载作用下,隧道拱顶二次衬砌第一主应力仅有压应力而无拉应力作用,而且随着拱顶二次衬砌背后空洞范围的增大,二次衬砌受压区的范围逐渐变小,压应力值先增大后减小;二次衬砌结构上产生的最大应力绝对值随着列车运行速度的提高而增大,且与列车运行速度的平方成二次函数关系。  相似文献   

7.
为了研究车轮多边形对车辆动力学性能的影响,基于多体动力学理论和轮轨滚动接触简化理论,结合CRH2型动车组的动力学参数,建立考虑轮对柔性的刚柔耦合车辆动力学模型。分析车轮多边形阶数和幅值的变化对轮对振动特性、非线性临界速度和轮轨力等车辆动力学性能的影响。结果表明:当多边形激励频率与轮对某阶模态振型的固有频率相近或者相等时,将引发轮对共振,使车辆的动力学性能发生改变;非线性临界速度会随车轮多边形阶数和幅值的增大而降低;脱轨系数随车轮多边形阶数的增加略有增大,随幅值的增大呈线性增大趋势;轮重减载率和轮轨垂向力随阶数的增加波动增大,随幅值的增加显著增大;车轮多边形对运行平稳性的影响甚微,主要是因为一系减振器和二系减振器的减振作用。为保证列车运行安全,根据轮重减载率限值0.6制定出车轮多边形在160~240 km/h速度工况下2~20阶的幅值限值。  相似文献   

8.
以沪昆下行线湘潭湘江特大桥长期监测数据为基础,研究了桥梁应力、振动与客车通行速度的相关性,重点分析了特定速度下的车-桥共振特性。研究结果表明:桥梁横向和竖向均存在明显的共振现象;应力幅值与客车通行速度散点图为单峰形状,客车运行速度在20~40 km/h时应力幅值较大;动力系数随运行速度的增加而增大,但小于安全限值;客车运行速度为35 km/h和50 km/h时,客车的激励频率与桥梁横向1阶自振频率接近,桥梁易发生横向共振,导致桥梁横向振动响应较大,竖向振动幅值随列车运行速度的增加而增大;当客车以25 km/h通过桥梁时,客车激励频率与竖向1阶自振频率接近,桥梁易发生竖向共振,但其竖向振动不明显,应力响应较为显著。建议车辆应尽量避开以上速度通过该桥。  相似文献   

9.
地铁列车在隧道内运行若遇客室着火,一般继续运行到前方车站进行救援,此时客室内的烟气扩散危及乘客生命安全.以客室内乘客行李着火的场景为例,通过对客室内的温度场和烟气流动进行数值模拟,分析了列车运行速度对客室内烟气扩散过程的影响.结果 表明:火灾发生后,客室内的温度和烟气浓度沿纵向均呈不对称形式的增长,后方区域的温度和烟气浓度均高于前方区域的;列车运行速度越高,单位时间内通过客室顶部风口排出客室的烟气越多;后方区域人眼高度位置处的温度和烟气浓度均随列车运行速度呈二次曲线关系减小.  相似文献   

10.
基于三维非定常不可压雷诺时均N-S方程和Realizable k-ε湍流模型,采用滑移网格对大风环境下高速列车从静止匀加速到200km/h的非定常气动性能进行模拟。将列车匀速运行的非定常气动力系数的均方根值与风洞试验结果对比,两者规律吻合,幅值差小于10%。结果表明:在15 m/s的横风下,列车匀加速的不同时刻,头、尾车和车辆连接处压力波动明显,当列车运行速度与风速大小相等时,压力波动最大;气动力系数的变化率随车速与风速比值的增大而迅速减小;列车以不同的加速度运行时,相同车速受到的气动载荷相等,但随加速度的增加,侧向力、阻力、倾覆力矩的变化率不断增大,将导致短时间内高速列车气动载荷的变化增大。  相似文献   

11.
采用计算流体动力学(CFD)方法对机车用折板式除尘器内的气固两相流动进行数值模拟,分析不同板间距、进气速度、颗粒直径对除尘效率和压力损失的影响。模拟结果表明:除尘效率随板间距的增大而降低,对于直径6μm的小颗粒,除尘效率随进气速度的增大而升高,而对于直径大于30μm的颗粒,除尘效率随进气速度的增大而降低,除尘效率随颗粒直径的增大先升高后降低且对直径为60μm的颗粒去除效果最佳;压力损失随板间距的增大而降低,随进气速度的增大而升高,随颗粒直径的增大变化较小;在挡尘钩上端存在回流区,使压力损失升高,增加板间距可减小回流区降低压力损失;在相同工况下对比3种不同结构的除尘器发现,折板式除尘器的总体性能要优于GL式和V-V式除尘器。  相似文献   

12.
在定常横风环境影响下,动车组在平地工况运行的稳定性、舒适性及安全性将会恶化。为了揭示其恶化的机理,开展动车组在平地工况伴随定常横风下运行的风洞试验,得到列车表面压力随时间变化的曲线后,再对列车受到的非定常气动载荷时域特性和频域特性进行分析。风洞测试结果表明:在相同风速和同一风向角下,平地动车组车体表面迎风侧1~8号测点和背风侧9~16号测点,其同侧各测点压力平均值在一定范围内波动,总体相差不大。当风向角为90°时,测点压力的幅值和最值随风速的增大而增大,其平均值与风洞来流风速的二次方成正比,即非定常气动压力振动剧烈,波动幅度明显增大。当合成风风速为60 m/s时,测点气动压力的平均值、最小值和最大值随风向角增大呈现先增大后减小的趋势,呈现正弦函数变化规律;当风向角增加到75°时,出现拐点,即最值点;车体表面两侧测点的幅值随风速的增大而增大,即非定常气动压力振动剧烈,振动幅度明显增大。而横风风速和风向角对非定常气动载荷的主振动频率带的影响不大;车体中部两侧测点的频率峰值均集中在0~18 Hz范围内,主振动频率均集中在0~4 Hz区间内,还明显存在频率为4~6 Hz,6~8 Hz和10~1...  相似文献   

13.
以宝兰客运专线上的魏家嘴隧道为工程背景,通过现场监测,研究围岩压力、钢拱架应力、初支与二衬接触压力、二衬钢筋轴力、混凝土应变等参数随时间变化的规律及分布特征,并应用现有可靠度理论和数据对实际工程安全状态进行评估。研究结果表明:围岩压力随时间增长而且增长速度较快,拱顶围岩压力最小,仰拱拱底的围岩应力最大,最后都趋于稳定;钢拱架应力值不稳定,波动较大,但最终趋于稳定;初支与二衬接触压力总体偏小,变化幅度较小,且随着时间增加最后趋于稳定值;二衬钢筋轴力以压力为主,内侧钢筋轴力值变化比较大不稳定,但最后趋于稳定;混凝土应变比较稳定,值普遍较小,但仰拱拱底应变随时间的增加而逐渐增大最后趋于较大应变值。  相似文献   

14.
万向轴作为列车主要机械传动部件,其动不平衡的存在加剧了传动系统振动,极易破坏传动系统轴承、万向节等核心部件。文章通过监测齿轮箱异常振动研究万向轴动不平衡时域预警方法,根据长期线路跟踪测试探索时域预警参数,建立万向轴-齿轮箱端振动时域预警模型;利用有限元方法建立传动系统有限元模型,研究不同转速下具有不同动不平衡值的万向轴在齿轮箱端振动响应关系。结果表明:不同转速下,标准旧轴加速度响应最大幅值均约为标准新轴的2.8倍。仿真及实测数据分析表明:列车运行速度为200 km/h时,振动加速度时域预警有效值为3.72g;列车运行速度为250 km/h时,振动加速度时域预警有效值为4.97g。台架试验验证了仿真结果及预警阈值的正确性。  相似文献   

15.
采用数值模拟方法,对高速列车在隧道内运行过程中所产生压力变化过程和分布特性进行分析;计算列车运行过程中隧道内不同位置最大负压;探讨隧道内列车运行负压作用下水沟盖板稳定性计算方法;确定盖板不同漏气面积下密封指数;分析不同行车工况及不同漏气面积条件下水沟盖板稳定性。结果表明:隧道内水沟盖板承受正负交替压力,其中负压峰值较大,对水沟盖板稳定性影响显著。水沟盖板提升量随盖板顶面漏气面积减小而明显增大。当盖板漏气面积小于5cm2时,盖板稳定性不能得到保证。我国目前高速铁路隧道水沟盖板在350km/h会车工况下,盖板提升量不大于0.6mm,列车通过时盖板会出现响动。可适当增大隧道内水沟盖板手孔尺寸以减小这种响动。  相似文献   

16.
路堤式与路肩式加筋土挡墙的现场试验与分析   总被引:1,自引:0,他引:1  
通过对铁路路堤式及路肩式加筋土挡墙的墙面板水平土压力、墙后土中垂直土压力及加筋材料变形的现场原位试验,得到了两种加筋土挡墙面板水平土压力、墙后土中垂直土压力、拉筋材料变形的变化规律,并对两种挡墙的破裂面进行了探讨。两种加筋土挡墙的面板水平土压力沿墙高均呈曲线型分布;墙后土中实测垂直土压力与理论值的差别随距墙面板距离的增加而线性增大;同一层拉筋变形的平均值随墙高增大而线性增大;列车运行荷载对面板水平土压力及墙后土体的垂直土压力和拉筋的变形影响均较小。  相似文献   

17.
风吹雪往往在铁路路堑地段形成较厚的积雪,掩埋线路,影响行车速度,危及行车安全,研究其具有重要的现实意义。基于FLUENT软件,模拟研究不同挡雪墙高度、不同风速下,挡雪墙背风侧风雪两相流的运动特性及挡雪墙参数优化设计。研究表明,风雪流初始速度一定时,挡雪墙背风侧积雪宽度随挡雪墙高度增大而变大,沉积在床面上的雪粒更多,阻雪效果越好;挡雪墙高度一定时,背风侧积雪宽度随风雪流速度的增加逐渐增大,挡雪墙距线路的距离也应越大。在综合考虑工程造价和挡雪效果的基础上,挡雪墙设计时,高度宜在2.5~3.5m,高度越高,风速越大,挡雪墙距线路的距离应越大,一般在20~35m即可。  相似文献   

18.
基于三维、非定常雷诺时均N-S方程和标准k-ε双方程湍流模型,采用滑移网格技术,对高速列车明线交会及隧道内交会时的空气流场进行数值模拟。研究不同线间距对高速列车交会压力波的影响。研究结果表明:明线交会压力波幅值随线间距的减小而增大,线间距从4.6 m变为4.4 m时,交会压力波幅值增大约8.3%;线间距从4.4 m变为4.2 m时,交会压力波幅值增大约8.5%;隧道交会压力波头波幅值随线间距的减小而增大,对非交会时段隧道压力波影响不大,线间距从4.6m变为4.4 m时,车体表面测点交会压力波头波幅值增大5.7%;线间距从4.4 m变为4.2 m时,交会压力波头波幅值增大5.8%;隧道壁面测点压力波幅值增加约2%,且隧道内2车交会,靠近交会位置的测点压力变化要远大于远离交会位置的测点。  相似文献   

19.
列车速度的提高加剧弓网电弧的产生,影响高速铁路的安全稳定运行。基于经典的Cassie和Mayr电弧模型,考虑电弧长度、列车速度对电弧横向吹弧耗散功率的影响,对Cassie-Mayr串联电弧模型进行改进;通过模拟实验和仿真结果对比,验证模型的正确性。建立牵引供电系统实际参数模型,分析离线时间和列车运行速度对电弧电压、电流的影响;对比列车速度为100、400 km/h时的弓网电弧伏安特性曲线。结果表明,弓网电弧电压随离线时间、列车速度的增大而增大。当燃弧时间0~100 ms内、运行速度为100 km/h时,起弧电压幅值从35 V增大到137 V;当速度增大至400 km/h,起弧电压从37 V增大到386 V。  相似文献   

20.
为分析轨道交通列车通过时轨侧广告牌的受力特性,基于流体力学理论和滑移网格技术,建立了列车通过广告牌的仿真计算模型,计算了广告牌的受力状况。仿真计算结果表明:广告牌中间位置存在一个稳定区;广告牌上测点压力和监测块侧力的正波幅值、负波幅值和全波幅值均随高度增加而减小,都分别与高度呈幂函数关系;广告牌达到一定长度才会产生稳定区,长度为6 m时,压力正波幅值最大值减小,全波幅值最大值变大;不同列车运行速度下,广告牌的压力系数、侧力系数及倾覆力矩系数几乎相同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号