首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Control strategies have been widely used in the literature to counteract the effects of bus bunching in passenger‘s waiting times and its variability. These strategies have only been studied for the case of a single bus line in a corridor. However, in many real cases this assumption does not hold. Indeed, there are many transit corridors with multiple bus lines interacting, and this interaction affects the efficiency of the implemented control mechanism.This work develops an optimization model capable of executing a control scheme based on holding strategy for a corridor with multiple bus lines.We analyzed the benefits in the level of service of the public transport system when considering a central operator who wants to maximize the level of service for users of all the bus lines, versus scenarios where each bus line operates independently. A simulation was carried out considering two medium frequency bus lines that serve a set of stops and where these two bus lines coexist in a given subset of stops. In the simulation we compared the existence of a central operator, using the optimization model we developed, against the independent operation of each line.In the simulations the central operator showed a greater reduction in the overall waiting time of the passengers of 55% compared to a no control scenario. It also provided a balanced load of the buses along the corridor, and a lower variability of the bus headways in the subset of stops where the lines coexist, thus obtaining better reliability for all types of passengers present in the public transport system.  相似文献   

2.
Optimizing bus-size and headway in transit networks   总被引:1,自引:0,他引:1  
Optimization models for calculating the best size for passenger carrying vehicles in urban areas were popular during the 1980s. These studies were abandoned in the ‘90s concluding that it was more efficient to use smaller buses at higher frequencies. This article returns to this controversial question, starting from the point of view that any calculation of bus size can only be made after considering the demand for each of the routes on the system. Therefore, an optimization model for sizing the buses and setting frequencies on each route in the system is proposed in accordance with the premises detailed below. The proposed model is a bi-level optimization model with constraints on bus capacity. The model allows buses of different sizes to be assigned to public transport routes optimizing the headways on each route in accordance with observed levels of demand. At the upper level the model considers the optimization of the system’s social and operating costs, these are understood to be the sum of the user’s and operator’s costs. At the lower level there is an assignment model for public transport with constraints on vehicle capacity which balances the flows for bus sizes and headways at each iteration. By graphically representing the results of the model applied to a real case, a series of useful conclusions are reached for the management and planning of a fleet of public transport vehicles.  相似文献   

3.
This paper describes a connected-vehicle-based system architecture which can provide more precise and comprehensive information on bus movements and passenger status. Then a dynamic control method is proposed using connected vehicle data. Traditionally, the bus bunching problem has been formulated into one of two types of optimization problem. The first uses total passenger time cost as the objective function and capacity, safe headway, and other factors as constraints. Due to the large number of scenarios considered, this type of framework is inefficient for real-time implementation. The other type uses headway adherence as the objective and applies a feedback control framework to minimize headway variations. Due to the simplicity in the formulation and solution algorithms, the headway-based models are more suitable for real-time transit operations. However, the headway-based feedback control framework proposed in the literature still assumes homogeneous conditions at all bus stations, and does not consider restricting passenger loads within the capacity constraints. In this paper, a dynamic control framework is proposed to improve not only headway adherence but also maintain the stability of passenger load within bus capacity in both homogenous and heterogeneous situations at bus stations. The study provides the stability conditions for optimal control with heterogeneous bus conditions and derives optimal control strategies to minimize passenger transit cost while maintaining vehicle loading within capacity constraints. The proposed model is validated with a numerical analysis and case study based on field data collected in Chengdu, China. The results show that the proposed model performs well on high-demand bus routes.  相似文献   

4.
5.
We develop a methodology to optimize the schedule coordination of a full‐stop service pattern and a short‐turning service pattern on a bus route. To capture the influence of bus crowding and seat availability on passengers' riding experience, we develop a Markov model to describe the seat‐searching process of a passenger and an approach to estimate the transition probabilities of the Markov model. An optimization model that incorporates the Markov model is proposed to design the short‐turning strategy. The proposed model minimizes the total cost, which includes operational cost, passengers' waiting time cost and passengers' in‐vehicle travel time cost. Algorithm is developed to produce optimal values of the decision variables. The proposed methodology is evaluated in a case study. Compared with methodologies that ignore the effect of bus crowding, the proposed methodology could better balance bus load along the route and between two service patterns, provide passengers with better riding experience and reduce the total cost. In addition, it is shown that the optimal design of the short‐turning strategy is sensitive to seat capacity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Public transport networks (PTN) are subject to recurring service disruptions. Most studies of the robustness of PTN have focused on network topology and considered vulnerability in terms of connectivity reliability. While these studies provide insights on general design principles, there is lack of knowledge concerning the effectiveness of different strategies to reduce the impacts of disruptions. This paper proposes and demonstrates a methodology for evaluating the effectiveness of a strategic increase in capacity on alternative PTN links to mitigate the impact of unexpected network disruptions. The evaluation approach consists of two stages: identifying a set of important links and then for each identified important link, a set of capacity enhancement schemes is evaluated. The proposed method integrates stochastic supply and demand models, dynamic route choice and limited operational capacity. This dynamic agent-based modelling of network performance enables to capture cascading network effects as well as the adaptive redistribution of passenger flows. An application for the rapid PTN of Stockholm, Sweden, demonstrates how the proposed method could be applied to sequentially designed scenarios based on their performance indicators. The method presented in this paper could support policy makers and operators in prioritizing measures to increase network robustness by improving system capacity to absorb unexpected disruptions.  相似文献   

7.
A smart design of transport systems involves efficient use and allocation of the limited urban road capacity in the multimodal environment. This paper intends to understand the system-wide effect of dividing the road space to the private and public transport modes and how the public transport service provider responds to the space changes. To this end, the bimodal dynamic user equilibrium is formulated for separated road space. The Macroscopic Fundamental Diagram (MFD) model is employed to depict the dynamics of the automobile traffic for its state-dependent feature, its inclusion of hypercongestion, and its advantage of capturing network topology. The delay of a bus trip depends on the running speed which is in turn affected by bus lane capacity and ridership. Within the proposed bimodal framework, the steady-state equilibrium traffic characteristics and the optimal bus fare and service frequency are analytically derived. The counter-intuitive properties of traffic condition, modal split, and behavior of bus operator in the hypercongestion are identified. To understand the interaction between the transport authority (for system benefit maximization) and the bus operator (for its own benefit maximization), we examine how the bus operator responds to space changes and how the system benefit is influenced with the road space allocation. With responsive bus service, the condition, under which expanding bus lane capacity is beneficial to the system as a whole, has been analytically established. Then the model is applied to the dynamic framework where the space allocation changes with varying demand and demand-responsive bus service. We compare the optimal bus services under different economic objectives, evaluate the system performance of the bimodal network, and explore the dynamic space allocation strategy for the sake of social welfare maximization.  相似文献   

8.
In this paper, a person-capacity-based optimization method for the integrated design of lane markings, exclusive bus lanes, and passive bus priority signal settings for isolated intersections is developed. Two traffic modes, passenger cars and buses, have been considered in a unified framework. Person capacity maximization has been used as an objective for the integrated optimization method. This problem has been formulated as a Binary Mixed Integer Linear Program (BMILP) that can be solved by a standard branch-and-bound routine. Variables including, allocation of lanes for different passenger car movements (e.g., left turn lanes or right turn lanes), exclusive bus lanes, and passive bus priority signal timings can be optimized simultaneously by the proposed model. A set of constraints have been set up to ensure feasibility and safety of the resulting optimal lane markings and signal settings. Numerical examples and simulation results have been provided to demonstrate the effectiveness of the proposed person-capacity-based optimization method. The results of extensive sensitivity analyses of the bus ratio, bus occupancy, and maximum degree of saturation of exclusive bus lanes have been presented to show the performance and applicable domain of the proposed model under different composition of inputs.  相似文献   

9.
This paper attempts to optimize bus service patterns (i.e., all-stop, short-turn, and express) and frequencies which minimize total cost, considering transfer demand elasticity. A mathematical model is developed based on the objective total cost for a generalized bus route, which is optimized subject to a set of constraints ensuring sufficient capacity, an operable bus fleet, and service frequency conservation. To optimize the integrated service of a bus route with many stops, which is a combinatorial optimization problem, a genetic algorithm is developed and applied to search for the solution. A case study, based on a real-world bus route in New Jersey, is conducted to demonstrate the applicability and effectiveness of the developed model and the solution algorithm. Results show that the proposed methodology is fairly efficient, and the optimized bus service significantly reduces total cost.  相似文献   

10.
The uncertainty associated with public transport services can be partially counteracted by developing real‐time models to predict downstream service conditions. In this study, a hybrid approach for predicting bus trajectories by integrating multiple predictors is proposed. The prediction model combines schedule, instantaneous and historical data. The contribution of each predictor as well as values of respective parameters is estimated by minimizing the prediction error using a linear regression heuristic. The hybrid method was applied to five bus routes in Stockholm, Sweden, and Brisbane, Australia. The results indicate that the hybrid method consistently outperforms the timetable and delay conservation prediction method for different route layouts, passenger demands and operation practices. Model validation confirms model transferability and real‐time applicability. Generating more accurate predictions can help service users adjust their travel plans and service providers to deploy proactive management and control strategies to mitigate the negative effects of service disturbances. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents a model-based multiobjective control strategy to reduce bus bunching and hence improve public transport reliability. Our goal is twofold. First, we define a proper model, consisting of multiple static and dynamic components. Bus-following model captures the longitudinal dynamics taking into account the interaction with the surrounding traffic. Furthermore, bus stop operations are modeled to estimate dwell time. Second, a shrinking horizon model predictive controller (MPC) is proposed for solving bus bunching problems. The model is able to predict short time-space behavior of public transport buses enabling constrained, finite horizon, optimal control solution to ensure homogeneity of service both in time and space. In this line, the goal with the selected rolling horizon control scheme is to choose a proper velocity profile for the public transport bus such that it keeps both timetable schedule and a desired headway from the bus in front of it (leading bus). The control strategy predicts the arrival time at a bus stop using a passenger arrival and dwell time model. In this vein, the receding horizon model predictive controller calculates an optimal velocity profile based on its current position and desired arrival time. Four different weighting strategies are proposed to test (i) timetable only, (ii) headway only, (iii) balanced timetable - headway tracking and (iv) adaptive control with varying weights. The controller is tested in a high fidelity traffic simulator with realistic scenarios. The behavior of the system is analyzed by considering extreme disturbances. Finally, the existence of a Pareto front between these two objectives is also demonstrated.  相似文献   

12.
Abstract

A model is proposed to calculate the overall operating and delay times spent at bus stops due to passenger boarding and alighting and the time lost to queuing caused by bus stop saturation. A formula for line demand at each stop and the interaction between the buses themselves is proposed and applied to different bus stops depending on the number of available berths. The application of this model has quantified significant operational delays suffered by users and operator due to consecutive bus arrival at stops, even with flows below bus stop capacity.  相似文献   

13.
公路客运峰谷现象明显,在运能、运力有限的情况下,如何才能更好地满足客运高峰期(如春运)的交通需求是政府和企业的一项重要课题。现有的政策并没有使有限的客运资源得到最合理的利用,给能源和环境都带来了一定的影响。文章较系统地从企业和政府两个角度论述了建立班车报停制度的必要性和可行性,通过对客运线路的调查,对公路客运班车报停制度的社会经济效益作了定性和定量分析。  相似文献   

14.
The effects of high passenger density at bus stops, at rail stations, inside buses and trains are diverse. This paper examines the multiple dimensions of passenger crowding related to public transport demand, supply and operations, including effects on operating speed, waiting time, travel time reliability, passengers’ wellbeing, valuation of waiting and in-vehicle time savings, route and bus choice, and optimal levels of frequency, vehicle size and fare. Secondly, crowding externalities are estimated for rail and bus services in Sydney, in order to show the impact of crowding on the estimated value of in-vehicle time savings and demand prediction. Using Multinomial Logit (MNL) and Error Components (EC) models, we show that alternative assumptions concerning the threshold load factor that triggers a crowding externality effect do have an influence on the value of travel time (VTTS) for low occupancy levels (all passengers sitting); however, for high occupancy levels, alternative crowding models estimate similar VTTS. Importantly, if demand for a public transport service is estimated without explicit consideration of crowding as a source of disutility for passengers, demand will be overestimated if the service is designed to have a number of standees beyond a threshold, as analytically shown using a MNL choice model. More research is needed to explore if these findings hold with more complex choice models and in other contexts.  相似文献   

15.
It has been frequently noted that in a non-regulated environment the development of public transport service is self-adjusting: Faced with decreasing demand, operators will tend to reduce service to cut costs, resulting in a decrease in the level-of-service, which then triggers a further drop in demand. The opposite may also occur: high demand will induce the operator to increase supply, e.g. through an increase in frequency, which results in a higher level-of-service and a subsequent increase in passenger numbers, triggering another round of service improvements. This paper adds to the literature by presenting an analytic model for analyzing these phenomena that we call vicious and virtuous cycles. Based on field data regarding passengers’ variation in willingness-to-wait for a public transport service, we investigate the dynamics of the line service and show how the emergence of a vicious or virtuous cycle depends on the total number of potential passengers, the share of captive riders, and bus capacity. The paper ends with a discussion of the implications of the findings for the planning of public transport services.  相似文献   

16.
《运输规划与技术》2012,35(8):825-847
ABSTRACT

In recent years, public transport has been developing rapidly and producing large amounts of traffic data. Emerging big data-mining techniques enable the application of these data in a variety of ways. This study uses bus intelligent card (IC card) data and global positioning system (GPS) data to estimate passenger boarding and alighting stations. First, an estimation model for boarding stations is introduced to determine passenger boarding stations. Then, the authors propose an innovative uplink and downlink information identification model (UDI) to generate information for estimating alighting stations. Subsequently, the estimation model for the alighting stations is introduced. In addition, a transfer station identification model is also developed to determine transfer stations. These models are applied to Yinchuan, China to analyze passenger flow characteristics and bus operations. The authors obtain passenger flows based on stations (stops), bus lines, and traffic analysis zones (TAZ) during weekdays and weekends. Moreover, average bus operational speeds are obtained. These findings can be used in bus network planning and optimization as well as bus operation scheduling.  相似文献   

17.
A significant proportion of bus travel time is contributed by dwell time for passenger boarding and alighting. More accurate estimation of bus dwell time (BDT) can enhance efficiency and reliability of public transportation system. Regression and probabilistic models are commonly used in literatures where a set of independent variables are used to define the statistical relationship between BDT and its contributing factors. However, due to technical and monetary constraints, it is not always feasible to collect all the data required for the models to work. More importantly, the contributing factors may vary from one bus route to another. Time series based methods can be of great interest as they require only historical time series data, which can be collected using a facility known as automatic vehicle location (AVL) system. This paper assesses four different time series based methods namely random walk, exponential smoothing, moving average (MA), and autoregressive integrated moving average to model and estimate BDT based on AVL data collected from Auckland. The performances of the proposed methods are ranked based on three important factors namely prediction accuracy, simplicity, and robustness. The models showed promising results and performed differently for central business district (CBD) and non‐CBD bus stops. For CBD bus stops, MA model performed the best, whereas for non‐CBD bus stops, ARIMA model performed the best compared with other time series based models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
This paper proposes a new dynamic bus control strategy aimed at reducing the negative effects of time-headway variations on route performance, based on real-time bus tracking data at stops. In routes with high demand, any delay of a single vehicle ends up causing an unstable motion of buses and producing the bus bunching phenomena. This strategy controls the cruising speed of buses and considers the extension of the green phase of traffic lights at intersections, when a bus is significantly delayed. The performance of this strategy will be compared to the current static operation technique based on the provision of slack times at holding points. An operational model is presented in order to estimate the effects of each controlling strategy, taking into account the vehicle capacity constraint. Control strategies are assessed in terms of passenger total travel time, operating cost as well as on the coefficient of headway variation. The effects of controlling strategies are tested in an idealized bus route under different operational settings and in the bus route of highest demand in Barcelona by simulation. The results show that the proposed dynamic controlling strategy reduces total system cost (user and agency) by 15–40% as well as the coefficient of headway variation 53–78% regarding the uncontrolled case, providing a bus performance similar to the expected when time disturbance is not presented.  相似文献   

19.
Missed transfers affect public transport (PT) operations by increasing passenger’s waiting and travel times and frustration. Because of the stochastic and uncertain nature of PT systems, synchronized transfers do not always materialize. This work proposes a new mathematical programming model to minimize total passenger travel time and maximize direct (without waiting) transfers. The model consists of four policies built on a combination of three tactics: holding, skip-stops, and short-turn, the last applied, for the first time, as a real-time control action. The concept is implemented in two steps: optimization and simulation. An agent-based simulation framework is used to represent real-life scenarios, generate random input data, and validate the optimization results. In order to assess the robustness of this framework, a wide range of schedule-deviation scenarios are defined using efficient algorithms for solving the control models within a rolling horizon structure. A case study of the Auckland, New Zealand, PT system is described for assessing the methodology developed. The results show a 4.7% reduction in total passenger travel time and a more than 150% increase in direct transfers. The best impressive results are attained under short headway operations.  相似文献   

20.
This paper describes a logit model of route choice for urban public transport and explains how the archived data from a smart card-based fare payment system can be used for the choice set generation and model estimation. It demonstrates the feasibility and simplicity of applying a trip-chaining method to infer passenger journeys from smart card transactions data. Not only origins and destinations of passenger journeys can be inferred but also the interchanges between the segments of a linked journey can be recognised. The attributes of the corresponding routes, such as in-vehicle travel time, transfer walking time and to get from alighting stop to trip destination, the need to change, and the time headway of the first transportation line, can be determined by the combination of smart card data with other data sources, such as a street map and timetable. The smart card data represent a large volume of revealed preference data that allows travellers' behaviour to be modelled with higher accuracy than by using traditional survey data. A multinomial route choice model is proposed and estimated by the maximum likelihood method, using urban public transport in ?ilina, the Slovak Republic, as a case study  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号