首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
    
Because individuals may misperceive travel time distributions, using the implied reduced form of the scheduling model might fall short of capturing all costs of travel time variability. We reformulate a general scheduling model employing rank-dependent utility theory and derive two special cases as econometric specifications to study these uncaptured costs. It is found that reduced-form expected cost functions still have a mean–variance form when misperception is considered, but the value of travel time variability is higher. We estimate these two models with stated-preference data and calculate the empirical cost of misperception. We find that: (i) travelers are mostly pessimistic and thus tend to choose departure times too early to achieve a minimum cost, (ii) scheduling preferences elicited using a stated-choice method can be relatively biased if probability weighting is not considered, and (iii) the extra cost of misperceiving the travel time distribution might be nontrivial when time is valued differently over the time of day and is substantial for some people.  相似文献   

3.
This paper attempts to measure the impacts of urban transportation system improvements or changes on the community. The community's perceptions of the impacts are represented by its utilities (or disutilities) over various ranges of values of the multiple attributes representing these impacts. The utility technique used in the evaluation is based upon von Neumann‐Morgenstern (vN‐M, 1947) Utility Theory, and is applied using Raiffa's (1970) Fractile Method.

The paper specifically applies the technique to model the perceptions of five subgroups within a community to the impact of a new light rail transit system that is being incorporated in the transportation system of the City of Calgary.

Results of the modeling indicate explicitly how the community changes its perception over ranges of values of the attributes evaluated. Biases of various subgroups within the community over these attributes are also shown. Statistical tests indicate that aggregated utility perceptions can represent the utility perceptions of the individual subgroups quite reasonably.  相似文献   

4.
This paper analyses the behaviour of metro users in choosing their access mode to a metro station. Multinominal logit models with satisfactory predictive power were developed for access mode choice on the basis of data collected by interviewing metro users at existing metro stations. A population segmentation approach was adopted and models referring to individuals having the same set of alternative access modes were developed. Trip purpose was found to have significant effects on the access mode choice. Thus, for each population segment different models are proposed for work and education and other trip purpose. Various conclusions concerning the importance of the variables included in the proposed models were drawn through comparisons carried out across the models.  相似文献   

5.
    
Significant efforts have been made in modeling a travel time distribution and establishing measures of travel time reliability (TTR). However, the literature on evaluating the factors affecting TTR is not well established. Accordingly, this paper presents an empirical analysis to determine potential factors that are associated with TTR. This study mainly applies the Bayesian Networks model to assess the probabilistic association between road geometry, traffic data, and TTR. The results from this model reveal that land use characteristics, intersection factors, and posted speed limits are directly associated with TTR. Evaluating the strength of the association between TTR and the directly related variables, the log odds ratio analysis indicates that the land use factor has the highest impact (0.83) followed by the intersection factor (0.57). The findings from this study can provide valuable resources to planners and traffic operators in their decision-making to improve TTR with quantitative evidence.  相似文献   

6.
    
Although many individual route choice models have been proposed to incorporate travel time variability as a decision factor, they are typically still deterministic in the sense that the optimal strategy requires choosing one particular route that maximizes utility. In contrast, this study introduces an individual route choice model where choosing a portfolio of routes instead of a single route is the best strategy for a rational traveler who cares about both journey time and lateness when facing stochastic network conditions. The proposed model is compared with UE and SUE models and the difference in both behavioral foundation and model characteristics is highlighted. A numerical example is introduced to demonstrate how such model can be used in traffic assignment problem. The model is then tested with GPS data collected in metropolitan Minneapolis–St. Paul, Minnesota. Our data suggest there is no single dominant route (defined here as a route with the shortest travel time for a 15 day period) in 18% of cases when links travel times are correlated. This paper demonstrates that choosing a portfolio of routes could be the rational choice of a traveler who wants to optimize route decisions under variability.  相似文献   

7.
The primary purpose of this study was to investigate how relative associations between travel time, costs, and land use patterns where people live and work impact modal choice and trip chaining patterns in the Central Puget Sound (Seattle) region. By using a tour-based modeling framework and highly detailed land use and travel data, this study attempts to add detail on the specific land use changes necessary to address different types of travel, and to develop a comparative framework by which the relative impact of travel time and urban form changes can be assessed. A discrete choice modeling framework adjusted for demographic factors and assessed the relative effect of travel time, costs, and urban form on mode choice and trip chaining characteristics for the three tour types. The tour based modeling approach increased the ability to understand the relative contribution of urban form, time, and costs in explaining mode choice and tour complexity for home and work related travel. Urban form at residential and employment locations, and travel time and cost were significant predictors of travel choice. Travel time was the strongest predictor of mode choice while urban form the strongest predictor of the number of stops within a tour. Results show that reductions in highway travel time are associated with less transit use and walking. Land use patterns where respondents work predicted mode choice for mid day and journey to work travel.
T. Keith LawtonEmail:

Lawrence Frank   is an Associate Professor and Bombardier Chair in Sustainable Transportation at the University of British Columbia and a Senior Non-Resident Fellow of the Brookings Institution and Principal of Lawrence Frank and Company. He has a PhD in Urban Design and Planning from the University of Washington. Mark Bradley   is Principal, Mark Bradley Research & Consulting, Santa Barbara California. He has a Master of Science in Systems Simulation and Policy Design from the Dartmouth School of Engineering and designs forecasting and simulation models for assessment of market-based policies and strategies. Sarah Kavage   is a Senior Transportation Planner and Special Projects Manager at Lawrence Frank and Company. She has a Masters in Urban Design and Planning from the University of Washington and is a writer and an artist based in Seattle. James Chapman   is a Principal Transportation Planner and Analyst at Lawrence Frank and Company in Atlanta Georgia. He has a Masters in Engineering from the Georgia Institute of Technology. T. Keith Lawton   transport modeling consultant and past Director of Technical services, Metro Planning Department, Portland, OR, has been active in model development for over 40 years. He has a BSc. in Civil Engineering from the University of Natal (South Africa), and an M.S. in Civil and Environmental Engineering from Duke University. He is a member and past Chair of the TRB Committee on Passenger Travel Demand Forecasting.  相似文献   

8.
Recent empirical studies on the value of time and reliability reveal that travel time variability plays an important role on travelers' route choice decision process. It can be considered as a risk to travelers making a trip. Therefore, travelers are not only interested in saving their travel time but also in reducing their risk. Typically, risk can be represented by two different aspects: acceptable risk and unacceptable risk. Acceptable risk refers to the reliability aspect of acceptable travel time, which is defined as the average travel time plus the acceptable additional time (or buffer time) needed to ensure more frequent on‐time arrivals, while unacceptable risk refers to the unreliability aspect of unacceptable late arrivals (though infrequent) that have a travel time excessively higher than the acceptable travel time. Most research in the network equilibrium based approach to modeling travel time variability ignores the unreliability aspect of unacceptable late arrivals. This paper examines the effects of both reliability and unreliability aspects in a network equilibrium framework. Specifically, the traditional user equilibrium model, the demand driven travel time reliability‐based user equilibrium model, and the α‐reliable mean‐excess travel time user equilibrium model are considered in the investigation under an uncertain environment due to stochastic travel demand. Numerical results are presented to examine how these models handle risk under travel time variability.  相似文献   

9.
This paper presents a joint trivariate discrete-continuous-continuous model for commuters’ mode choice, work start time and work duration. The model is designed to capture correlations among random components influencing these decisions. For empirical investigation, the model is estimated using a data set collected in the Greater Toronto Area (GTA) in 2001. Considering the fact that work duration involves medium- to long-term decision making compared to short-term activity scheduling decisions, work duration is considered endogenous to work start time decisions. The empirical model reveals many behavioral details of commuters’ mode choice, work start time and duration decisions. The primary objective of the model is to predict workers’ work schedules according to mode choice, which is considered a skeletal activity schedule in activity-based travel demand models. However, the empirical model reveals many behavioral details of workers’ mode choices and work scheduling. Independent application of the model for travel demand management policy evaluations is also promising, as it provides better value in terms of travel time estimates.  相似文献   

10.
    
Valuation of travel time savings is a critical measure in transport infrastructure appraisal, traffic modelling and network performance. It has been recognised for some time that the travel times associated with repeated trips are subject to variation, and hence there is risk embedded in the treatment of expected travel time. In the context of the expected utility framework, we use a nonlinear probability weighting function to accommodate choice made under risk. Although the empirical findings suggest small differences between the value of expected travel time savings (VETTS) in the presence and absence of risk, the mean estimate does make a noticeable difference to time benefits when applied to real projects. By incorporating nonlinear probability weighting, our model reveals that the probabilities associated with specific travel times that are shown to respondents in the choice experiment are transformed, resulting in overweighting of outcomes with low probabilities and underweighting of outcomes with high probabilities. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
We hypothesise that intra-household interaction influences home departure time and mode choice for the morning commute. In Indonesia, over 71% of vehicles on the road are motorcycles. This fact increases the significance of household interaction in influencing transport mode choice since the simplicity of the motorcycle allows a great degree of versatility in regard to multiple family member transport. To emphasise this point, our study focuses on the unique travel behaviour of adolescents during the school morning commute which, due to the use of the motorcycle, is a combination of the travel behaviour of accompanied children and escorting adults. Our study discovers that adolescents are likely to shift their school arrival time very early or close to the designated starting time in relation to motorcycle-based parental escort to school. In regard to mode choice, adolescent students prefer to be escorted by motorcycle rather than take public transport.  相似文献   

12.
This paper investigates empirical relationships between trip chain type and mode class choice for developing countries. To formulate these two sets of decisions, four empirical models are developed using structural equation modeling (SEM). Those models are calibrated using one-month travel diary data collected in Dhaka city. SEM correlates the observed variables and identifies their relationship with trip-chaining type utility and mode class choice utility. The fitted models are selected based on statistical results and similarity with the real-life situation. Direct relationships between trip-chaining and mode choice utilities are found insignificant. However, several socio-demographic factors influence both simultaneously. Consequently, it is essential to consider mode class choice concurrently for modeling trip chains. This study also investigates the influencing factors for work-based and non-work-based trip chains separately and effects of road users’ heterogeneity. The research results can be utilized to perceive trip chain-mode choice patterns for developing countries.  相似文献   

13.
Modeling Travel Time Under ATIS Using Mixed Linear Models   总被引:1,自引:0,他引:1  
The objective of this paper is to model travel time when drivers are equipped with pre-trip and/or en-route real-time traffic information/advice. A travel simulator with a realistic network and real historical congestion levels was used as a data collection tool. The network included 40 links and 25 nodes. This paper presents models of the origin-to-destination travel time and en-route short-term route (link) travel time under five different types and levels of advanced traveler information systems (ATIS). Mixed linear models with the repeated observation's technique were used in both models. Different covariance structures (including the independent case) were developed and compared. The effect of correlation was found significant in both models. The trip travel time analysis showed that as the level of information increases (adding en-route to the pre-trip and advice to the advice-free information), the average travel time decreases. The model estimates show that providing pre-trip and en-route traffic information with advice could result in significant savings in the overall travel time. The en-route short-term (link) travel time analysis showed that the en-route short-term (link) information has a good chance of being used and followed. The short-term qualitative information is more likely to be used than quantitative information. Learning and being familiar with the system that provides the information decreases en-route short-term delay.  相似文献   

14.
This paper reports a field experiment with the purpose of studying the effects of increased awareness on travel mode choice. One hundred fifteen subjects were randomly assigned to an experimental and a control group. In the experimental group, a more deliberate choice of travel mode was induced and expected to result in a stronger relationship between attitude and behavior, a weaker relationship between habit and behavior, and a behavioral change among individuals with a strong habit. Attitude, habit, and behavior were measured in travel diaries and questionnaires. The results indicated no significant change in the relationship between attitude and behavior and no significant change in the relationship between habit and behavior. However, a temporally extended decrease in car use was observed in the experimental group. The effect was noted for individuals with a strong habit who reduced their car use but not for subjects with a weak habit.  相似文献   

15.
In this paper, we extend the α-reliable mean-excess traffic equilibrium (METE) model of Chen and Zhou (Transportation Research Part B 44(4), 2010, 493-513) by explicitly modeling the stochastic perception errors within the travelers’ route choice decision processes. In the METE model, each traveler not only considers a travel time budget for ensuring on-time arrival at a confidence level α, but also accounts for the impact of encountering worse travel times in the (1 − α) quantile of the distribution tail. Furthermore, due to the imperfect knowledge of the travel time variability particularly in congested networks without advanced traveler information systems, the travelers’ route choice decisions are based on the perceived travel time distribution rather than the actual travel time distribution. In order to compute the perceived mean-excess travel time, an approximation method based on moment analysis is developed. It involves using the conditional moment generation function to derive the perceived link travel time, the Cornish-Fisher Asymptotic Expansion to estimate the perceived travel time budget, and the Acerbi and Tasche Approximation to estimate the perceived mean-excess travel time. The proposed stochastic mean-excess traffic equilibrium (SMETE) model is formulated as a variational inequality (VI) problem, and solved by a route-based solution algorithm with the use of the modified alternating direction method. Numerical examples are also provided to illustrate the application of the proposed SMETE model and solution method.  相似文献   

16.
In probe-based traffic monitoring systems, traffic conditions can be inferred based on the position data of a set of periodically polled probe vehicles. In such systems, the two consecutive polled positions do not necessarily correspond to the end points of individual links. Obtaining estimates of travel time at the individual link level requires the total traversal time (which is equal to the polling interval duration) be decomposed. This paper presents an algorithm for solving the problem of decomposing the traversal time to times taken to traverse individual road segments on the route. The proposed algorithm assumes minimal information about the network, namely network topography (i.e. links and nodes) and the free flow speed of each link. Unlike existing deterministic methods, the proposed solution algorithm defines a likelihood function that is maximized to solve for the most likely travel time for each road segment on the traversed route. The proposed scheme is evaluated using simulated data and compared to a benchmark deterministic method. The evaluation results suggest that the proposed method outperforms the bench mark method and on average improves the accuracy of the estimated link travel times by up to 90%.  相似文献   

17.
Travel mode choice: affected by objective or subjective determinants?   总被引:1,自引:2,他引:1  
This contribution presents theoretical considerations concerning the connections between life situation, lifestyle, choice of residential location and travel behaviour, as well as empirical results of structural equation models. The analyses are based on data resulting from a survey in seven study areas in the region of Cologne. The results indicate that lifestyles influence mode choice, although slightly, even when life situation is controlled for. The influence of life situation on mode choice exceeds the influence of lifestyle. The influence that lifestyle, and in part also life situation, has on mode choice is primarily mediated by specific location attitudes and location decisions that influence mode choice, respectively. Here objective spatial conditions as well as subjective location attitudes are important.
Joachim ScheinerEmail:
  相似文献   

18.
    
Abstract

In this paper a route-based dynamic deterministic user equilibrium assignment model is presented. Some features of the linear travel time model are first investigated and then a divided linear travel time model is proposed for the estimation of link travel time: it addresses the limitations of the linear travel time model. For the application of the proposed model to general transportation networks, this paper provides thorough investigations on the computational issues in dynamic traffic assignment with many-to-many OD pairs and presents an efficient solution procedure. The numerical calculations demonstrate that the proposed model and solution algorithm produce satisfactory solutions for a network of substantial size with many-to-many OD pairs. Comparisons of assignment results are also made to show the impacts of incorporation of different link travel time models on the assignment results.  相似文献   

19.
    
Values of time have been defined in various forms such as value of leisure time (shadow price of time), value of travel time, and value of saving time, and are mostly measured based on individuals' travel choice behavior. The main purpose of this study is to estimate the value of leisure time by general mode choice models. The estimated level can be used to evaluate the benefits from the increasing leisure time gained by people in Taiwan after the government has practiced a series of policies to shorten employee's working hours in the last few years. To justify the application, this study reviews and reinterprets the theoretical results of some major works on value of time derivations. Then to practically estimate the value of leisure time, it suggests a method of combining revealed preference and stated preference data for application. Finally, it conducts an empirical study on travelers' mode choices behavior in Taiwan to carry out the method suggested. The value of leisure time is estimated at 56NT$ per hour (around 1.65US$/hr), which is even lower than the minimum wage rate regulated by Taiwan government.  相似文献   

20.
Future levels of vehicle air pollution in urban areas will depend on the proportion of new car buyers who opt for less polluting vehicles, as these appear on the market. This paper examines the factors likely to influence the demand for lower emission and zero emission vehicles. Using a discrete choice experiment, suburban driver commuters choose between three types of vehicle, one conventional, one fuel-efficient and one electric. Each is characterized by varying vehicle cost and performance measures, range and refueling rates, and commuting costs and times. The latter are manipulated to determine how their use as economic instruments might influence vehicle choice. All cost and time variables are expressed as ratios of the respondent’s current situation. Parameters of a multinomial discrete choice model are used in a choice simulator to estimate the average choice probability of each type of vehicle under different scenarios reflecting possible future relative vehicle prices and performance levels as well as differential commuting costs and times based on policies aimed at encouraging the purchase of cleaner vehicles. The evidence is that the latter economic instruments will have modest effects on vehicle choice. By contrast there would be a large shift of demand to cleaner and zero-emission vehicles provided their cost and performance came within an acceptable range of conventional vehicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号