首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
This paper examines the charging behavior of 7,979 plug-in electric vehicle (PEV) owners in California. The study investigates where people charge be it at home, at work, or at public location, and the level of charging they use including level 1, level 2, or DC fast charging. While plug-in behavior can differ among PEV owners based on their travel patterns, preferences, and access to infrastructure studies often make generalizations about charging behavior. In this study, we explore differences in charging behavior among different types of PEV owners based on their use of charging locations and levels, we then identify factors associated with PEV owner’s choice of charging location and charging level. We identified socio-demographic (gender and age), vehicle characteristics, commute behavior, and workplace charging availability as significant factors related to the choice of charging location.  相似文献   

2.
    
Shared autonomous vehicles, or SAVs, have attracted significant public and private interest because of their opportunity to simplify vehicle access, avoid parking costs, reduce fleet size, and, ultimately, save many travelers time and money. One way to extend these benefits is through an electric vehicle (EV) fleet. EVs are especially suited for this heavy usage due to their lower energy costs and reduced maintenance needs. As the price of EV batteries continues to fall, charging facilities become more convenient, and renewable energy sources grow in market share, EVs will become more economically and environmentally competitive with conventionally fueled vehicles. EVs are limited by their distance range and charge times, so these are important factors when considering operations of a large, electric SAV (SAEV) fleet.This study simulated performance characteristics of SAEV fleets serving travelers across the Austin, Texas 6-county region. The simulation works in sync with the agent-based simulator MATSim, with SAEV modeling as a new mode. Charging stations are placed, as needed, to serve all trips requested (under 75 km or 47 miles in length) over 30 days of initial model runs. Simulation of distinctive fleet sizes requiring different charge times and exhibiting different ranges, suggests that the number of station locations depends almost wholly on vehicle range. Reducing charge times does lower fleet response times (to trip requests), but increasing fleet size improves response times the most. Increasing range above 175 km (109 miles) does not appear to improve response times for this region and trips originating in the urban core are served the quickest. Unoccupied travel accounted for 19.6% of SAEV mileage on average, with driving to charging stations accounting for 31.5% of this empty-vehicle mileage. This study found that there appears to be a limit on how much response time can be improved through decreasing charge times or increasing vehicle range.  相似文献   

3.
    
Take-up rates of electric vehicles (EV) are increasing and are predicted to accelerate rapidly. Public EV charging networks will be required to support future EV fleets. If unplanned, public charging networks are highly likely to be suboptimal. Planners need to understand and plan for future EV charging infrastructure requirements, particularly public DC fast charging networks, as both the upfront investment costs and the consequences of misallocation are high. However, the task of determining the optimal locations and allocations (types and numbers) of public EV charging infrastructure is complicated as it requires knowledge of many variables. These include EV driver behaviors, driving patterns, predicting evolutionary changes in EV and EV charging technologies, future EV take-up rates, and what investment may or may not occur in the absence of government funding support.  相似文献   

4.
    
Inductive charging, a form of wireless charging, uses an electromagnetic field to transfer energy between two objects. This emerging technology offers an alternative solution to users having to physically plug in their electric vehicle (EV) to charge. Whilst manufacturers claim inductive charging technology is market ready, the efficiency of transfer of electrical energy is highly reliant on the accurate alignment of the coils involved. Therefore understanding the issue of parking misalignment and driver behaviour is an important human factors question, and the focus of this paper. Two studies were conducted, one a retrospective analysis of 100 pre-parked vehicles, the second a dynamic study where 10 participants parked an EV aiming to align with a charging pad with no bay markings as guidance. Results from both studies suggest that drivers are more accurate at parking laterally than in the longitudinal direction, with a mean lateral distance from the centre of the bay being 12.12 and 9.57 cm (retrospective and dynamic studies respectively) compared to longitudinally 23.73 and 73.48 cm. With current inductive charging systems having typical tolerances of approximately ±10 cm from their centre point, this study has shown that only 5% of vehicles in both studies would be aligned sufficiently accurately to allow efficient transfer of electrical energy through induction.  相似文献   

5.
    
This paper presents a research on traffic modelling developed for assessing traffic and energy performance of electric systems installed along roads for dynamic charging-while-driving (CWD) of fully electric vehicles (FEVs).The logic adopted by the developed traffic model is derived from a particular simulation scenario of electric charging: a freight distribution service operated using medium-sized vans. In this case, the CWD service is used to recover the state of charge of the FEV batteries to shortly start with further activities after arrival at the depot.The CWD system is assumed to be implemented in a multilane ring road with several intermediate on-ramp entrances, where the slowest lane is reserved for the dynamic charging of authorized electric vehicles. A specific traffic model is developed and implemented based on a mesoscopic approach, where energy requirements and charging opportunities affect driving and traffic behaviours. Overtaking manoeuvres as well as new entries in the CWD lane of vehicles that need to charge are modelled according to a cooperative driving system, which manages adequate time gaps between consecutive vehicles. Finally, a speed control strategy is simulated at a defined node to create an empty time-space slot in the CWD lane, by delaying the arriving vehicles. This simulated control, implemented to allow maintenance operations for CWD that may require clearing a charging zone for a short time slot, could also be applied to facilitate on-ramp merging manoeuvres.  相似文献   

6.
    
This survey investigates the state-of-the-art in operations and systems-related studies of wireless charging electric vehicles (EVs). The wireless charging EV is one of emerging transportation systems in which the EV’s battery is charged via wireless power transfer (WPT) technology. The system makes use of charging infrastructure embedded under the surface of the road that transfers electric power to the vehicle while it is in transit. The survey focuses on studies related to both dynamic and quasi-dynamic types of wireless charging EV – charging while in motion and while temporarily stopped during a trip, respectively. The ability to charge EVs while in transit has raised numerous operations and systems issues that had not been observed in conventional EVs. This paper surveys the current research on such issues, including decisions on the allocation of charging infrastructure; cost and benefit analyses; billing and pricing; and other supporting operations and facilities. This survey consists of three parts. The first provides an orienting review of terminology specific to wireless charging EVs; it also reviews some past and ongoing developments and implementations of wireless charging EVs. The second part surveys the research on the operations and systems issues prompted by wireless charging EVs. The third part proposes future research directions. The goal of the survey is to provide researchers and practitioners with an overview of research trends and to provide a guide to promising future research directions.  相似文献   

7.
    
Considering the depletion of fossil fuels and the environmental impact of transport, reducing the use of such fuels is a globally accepted priority. Thus, when moving towards alternative energy types, the first will undoubtedly be electrical energy. In order to accelerate and contribute to this process, electric vehicles (EV) must be preferred over conventional motor vehicles. However, there are various problems associated with the use of EVs, such as range and recharge status. Optimal planning of electric vehicle charging stations (EVCS) is a solution to these problems. For this purpose, parameters affecting EVCS locations have been determined in the paper. Considering these parameters and the current EVCS locations, the most suitable alternative EVCS locations were identified using Geographical Information Systems (GIS). Both the current and alternative EVCS locations were evaluated by Analytic Hierarchy Process (AHP), Preference Ranking Organization Method for Enrichment of Evaluations (PROMETHEE), and VlseKriterijuska Optimizacija I Komoromisno Resenje (VIKOR) from multi-criteria decision-making (MCDM) methods. The results show that, in Istanbul, the southeast of the European side and the southwest of the Anatolian side were most suitable for EVCS.  相似文献   

8.
    
The diffusion of electric vehicles (EVs) is studied in a two-sided market framework consisting of EVs on the one side and EV charging stations (EVCSs) on the other. A sequential game is introduced as a model for the interactions between an EVCS investor and EV consumers. A consumer chooses to purchase an EV or a conventional gasoline alternative based on the upfront costs of purchase, the future operating costs, and the availability of charging stations. The investor, on the other hand, maximizes his profit by deciding whether to build charging facilities at a set of potential EVCS sites or to defer his investments.The solution of the sequential game characterizes the EV-EVCS market equilibrium. The market solution is compared with that of a social planner who invests in EVCSs with the goal of maximizing the social welfare. It is shown that the market solution underinvests EVCSs, leading to slower EV diffusion. The effects of subsidies for EV purchase and EVCSs are also considered.  相似文献   

9.
The transition to electric vehicles (EV) faces two major barriers. On one hand, EV batteries are still expensive and limited by range, owing to the lack of technology breakthrough. On the other hand, the underdeveloped supporting infrastructure, particularly the lack of fast refueling facilities, makes EVs unsuitable for medium and long distance travel. The primary purpose of this study is to better understand these hurdles and to develop strategies to overcome them. To this end, a conceptual optimization model is proposed to analyze travel by EVs along a long corridor. The objective of the model is to select the battery size and charging capacity (in terms of both the charging power at each station and the number of stations needed along the corridor) to meet a given level of service in such a way that the total social cost is minimized. Two extensions of the base model are also considered. The first relaxes the assumption that the charging power at the stations is a continuous variable. The second variant considers battery swapping as an alternative to charging. Our analysis suggests that (1) the current paradigm of charging facility development that focuses on level 2 charging delivers poor level of service for long distance travel; (2) the level 3 charging method is necessary not only to achieve a reasonable level of service, but also to minimize the social cost; (3) investing on battery technology to reduce battery cost is likely to have larger impacts on reducing the charging cost; and (4) battery swapping promises high level of service, but it may not be socially optimal for a modest level of service, especially when the costs of constructing swapping and charging stations are close.  相似文献   

10.
    
Battery-only electric vehicles (BEVs) generally offer better air quality through lowered emissions, along with energy savings and security. The issue of long-duration battery charging makes charging-station placement and design key for BEV adoption rates. This work uses genetic algorithms to identify profit-maximizing station placement and design details, with applications that reflect the costs of installing, operating, and maintaining service equipment, including land acquisition. Fast electric vehicle charging stations (EVCSs) are placed across a congested city's network subject to stochastic demand for charging under a user-equilibrium traffic assignment. BEV users’ station choices consider endogenously determined travel times and on-site charging queues. The model allows for congested-travel and congested-station feedback into travelers’ route choices under elastic demand and BEV owners’ station choices, as well as charging price elasticity for BEV charging users.Boston-network results suggest that EVCSs should locate mostly along major highways, which may be a common finding for other metro settings. If 10% of current EV owners seek to charge en route, a user fee of $6 for a 30-min charging session is not enough for station profitability under a 5-year time horizon in this region. However, $10 per BEV charging delivers a 5-year profit of $0.82 million, and 11 cords across 3 stations are enough to accommodate a near-term charging demand in this Boston-area application. Shorter charging sessions, higher fees, and/or allowing for more cords per site also increase profits generally, everything else constant. Power-grid and station upgrades should keep pace with demand, to maximize profits over time, and avoid on-site congestion.  相似文献   

11.
    
Upward expectations of future electric vehicle (EV) growth pose the question about the future load on the electricity grid. While existing literature on EV charging demand management has focused on technical aspects and considered EV-owners as utility maximizers, this study proposes a behavioural model incorporating psychological aspects relevant to EV-owners facing charging decisions and interacting with the supplier. The behavioural model represents utility maximization under myopic loss aversion (MLA) within an ultimatum game (UG) framework where the two players are the EV-owner and the electricity supplier. Experimental economics allowed testing the validity of the behavioural model by designing three experiments where a potential EV-owner faces three decisions (i.e., to postpone EV charging to off-peak periods for a discount proposed by the supplier, the amount of discount to request for off-peak charging at times decided by the supplier, and the amount of discount to accept for supplier-controlled charging) under two contract durations (i.e., short-term, long-term). Findings from the experiments show that indeed potential EV-owners perform charging decisions while being affected by MLA resulting from monetary considerations and the UG participation, and that presenting long-term contracts help potential EV-owners to curtail MLA behaviour and minimise cost even though the assumption of utility maximization is violated.  相似文献   

12.
13.
Research that addresses policy measures to increase the adoption of electric vehicles (EVs) has discussed government regulations such as California’s Zero Emission Vehicle (ZEV) or penalties on petroleum-based fuels. Relatively few articles have addressed policy measures designed to increase the adoption of EVs by incentives to influence car buyers’ voluntary behavior. This article examines the effects of such policy measures. Two of these attributes are monetary measures, two others are traffic regulations, and the other three are related to investments in charging infrastructure. Consumer preferences were assessed using a choice-based conjoint analysis on an individual basis by applying the hierarchical Bayes method. In addition, the Kano method was used to elicit consumer satisfaction. This not only enabled the identification of preferences but also why preferences were based on either features that were “must-haves” or on attributes that were not expected but were highly attractive and, thus, led to high satisfaction. The results of surveys conducted in 20 countries in 5 continents showed that the installation of a charging network on freeways is an absolute necessity. This was completely independent from the average mileage driven per day. High cash grants were appreciated as attractive; however, combinations of lower grants with charging facilities resulted in similar preference shares in market simulations for each country. The results may serve as initial guidance for policymakers and practitioners in improving their incentive programs for electric mobility.  相似文献   

14.
    
Fuelled by a rapidly rising human global population, an increasing demand for freedom to travel and the affordability made possible by modern manufacturing there has been an exponential rise in the number of automobiles – in the year 2013 there were in excess of a billion automobiles in use! Three factors that are of serious concern are the consequential energetic, environmental and economic impacts. One solution that is being seen by a number of national governments is the advent (or rather re-introduction) of electric vehicles (EVs). However, one of the key factors that will need to be explored will be the source of the required electricity for the EVs that will define the level of their sustainability.In this article an experimental evaluation of an electric vehicle has been undertaken. The Renault Zoe e-car has been used for this task with the ‘car chasing’ technique employed to measure the driving cycle. The speed and energy use were recorded for the vehicle that was driven along the principal arteries of the City of Edinburgh, Scotland. In a separate activity vehicle driving tests were also undertaken in one town in Slovenia (Celje). In both places urban and suburban routes were covered for different times of the day. Results are presented to quantify the energetic, environmental and economic performance indices for the driven vehicle. A discussion is also provided on the potential for reduction of carbon emissions from the transport sector by provision of environmentally-friendly means of generating electricity.  相似文献   

15.
Electric travelling appears to dominate the transport sector in the near future due to the needed transition from internal combustion vehicles (ICV) towards Electric Vehicles (EV) to tackle urban pollution. Given this trend, investigation of the EV drivers’ travel behaviour is of great importance to stakeholders including planners and policymakers, for example in order to locate charging stations. This research explores the Battery Electric Vehicle (BEV) drivers route choice and charging preferences through a Stated Preference (SP) survey. Collecting data from 505 EV drivers in the Netherlands, we report the results of estimating a Mixed Logit (ML) model for those choices. Respondents were requested to choose a route among six alternatives: freeways, arterial ways, and local streets with and without fast charging. Our findings suggest that the classic route attributes (travel time and travel cost), vehicle-related variables (state-of-charge at the origin and destination) and charging characteristics (availability of a slow charging point at the destination, fast charging duration, waiting time in the queue of a fast-charging station) can influence the BEV drivers route choice and charging behaviour significantly. When the state-of-charge (SOC) at the origin is high and a slow charger at the destination is available, routes without fast charging are likely to be preferred. Moreover, local streets (associated with slow speeds and less energy consumption) could be preferred if the SOC at the destination is expected to be low while arterial ways might be selected when a driver must recharge his/her car during the trip via fast charging.  相似文献   

16.
    
We present a sensitivity analysis for a mechanical model, which is used to estimate the energy demand of battery electric vehicles. This model is frequently used in literature, but its parameters are often chosen incautiously, which can lead to inaccurate energy demand estimates. We provide a novel prioritization of parameters and quantify their impact on the accuracy of the energy demand estimation, to enable better decision making during the model parameter selection phase. We furthermore determine a subset of parameters, which has to be defined, in order to achieve a desired estimation accuracy. The analysis is based on recorded GPS tracks of a battery electric vehicle under various driving conditions, but results are equally applicable for other BEVs. Results show that the uncertainty of vehicle efficiency and rolling friction coefficient have the highest impact on accuracy. The uncertainty of power demand for heating and cooling the vehicle also strongly affects the estimation accuracy, but only at low speeds. We also analyze the energy shares related to each model component including acceleration, air drag, rolling and grade resistance and auxiliary energy demand. Our work shows that, while some components make up a large share of the overall energy demand, the uncertainty of parameters related to these components does not affect the accuracy of energy demand estimation significantly. This work thus provides guidance for implementing and calibrating an energy demand estimation based on a longitudinal dynamics model.  相似文献   

17.
    
A reliable estimate of the potential for electrification of personal automobiles in a given region is dependent on detailed understanding of vehicle usage in that region. While broad measures of driving behavior, such as annual miles traveled or the ensemble distribution of daily travel distances are widely available, they cannot be predictors of the range needs or fuel-saving potential that influence an individual purchase decision. Studies that record details of individual vehicle usage over a sufficient time period are available for only a few regions in the US. In this paper we compare statistical characterization of four such studies (three in the US, one in Germany) and find remarkable similarities between them, and that they can be described quite accurately by properly chosen set of distributions. This commonality gives high confidence that ensemble data can be used to predict the spectrum of usage and acceptance of alternative vehicles in general. This generalized representation of vehicle usage may also be a powerful tool in estimating real-world fuel consumption and emissions.  相似文献   

18.
    
The suitability of an electric vehicle of a given range to serve in place of a given conventional vehicle is not limited by the daily travel over distances within that that range, but rather by the occasional inconvenience of finding alternative transport for longer trips. While the frequency of this inconvenience can be computed from usage data, the willingness of individual users to accept that replacement depends on details of available transportation alternatives and their willingness to use them. The latter can be difficult to assess. Fortunately, 65% of US households have access to the most convenient alternative possible: a second car. In this paper we describe an analysis of prospective EV acceptance and travel electrification in two-car households in the Puget Sound region. We find that EVs with 60 miles of useful range could be acceptable (i.e. incur inconvenience no more than three days each year) to nearly 90% of two-car households and electrify nearly 55% of travel in those households (32% of all travel). This compares to 120 miles range required to achieve the same fraction of electrified travel via one-for-one replacement of individual vehicles. Even though only one third of personal vehicles in the US may be replaced in this paradigm, the ‘EV as a second-car’ concept is attractive in that a significant fraction of travel can be electrified by vehicles with modest electric range and virtually no dependence on public charging infrastructure.  相似文献   

19.
    
Allocating movable resources dynamically enables evacuation management agencies to improve evacuation system performance in both the spatial and temporal dimensions. This study proposes a mixed integer linear program (MILP) model to address the dynamic resource allocation problem for transportation evacuation planning on large-scale networks. The proposed model is built on the earliest arrival flow formulation that significantly reduces problem size. A set of binary variables, specifically, the beginning and the ending time of resource allocation at a location, enable a strong formulation with tight constraints. A solution algorithm is developed to solve for an optimal solution on large-scale network applications by adopting Benders decomposition. In this algorithm, the MILP model is decomposed into two sub-problems. The first sub-problem, called the restricted master problem, identifies a feasible dynamic resource allocation plan. The second sub-problem, called the auxiliary problem, models dynamic traffic assignment in the evacuation network given a resource allocation plan. A numerical study is performed on the Dallas–Fort Worth network. The results show that the Benders decomposition algorithm can solve an optimal solution efficiently on a large-scale network.  相似文献   

20.
    
In this paper, we study the strategies of the most relevant stakeholders with regard to the development and commercialization of electric vehicles (EVs) and their recharging infrastructure. Building on the perspective of socio-technical transitions, we relate the strategies of stakeholders to their current and future interests, as well as to their expectations with regard to EVs. Our analysis is based on a series of 38 semi-structured interviews with representatives of a variety of stakeholders in the Netherlands.EVs pose both opportunities and threats to various stakeholders. They therefore participate in the development of the emerging EV system, primarily in order to learn about the potential positive and negative impacts of these systems on their interests and, ultimately, to be able to grasp the opportunities and mitigate the threats. In other words, the expectations, interests, and resulting strategies of stakeholders relate to and depend upon the specific configuration of the emerging socio-technical system for electric mobility. We identify six potential conflicts of interest: the division of tasks within a public recharging infrastructure; the allocation of charging spots; the ways in which charging behavior can be influenced; the role of fast-charging, technical standards for charging equipment; and supportive policies for full-electric and plug-in hybrid vehicles.In general, the stakeholders do not seem overly concerned about either short-term returns on investments or long-term negative impacts. In this regard, the early phase of the transition can be understood as a relatively carefree phase. In order to continue the development of the emerging EV system and to keep it on the right track, however, for the foreseeable future, supportive policies will be necessary in order to provide a stable and reliable basis for further market expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号