首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 765 毫秒
1.
Acoustic vector sensor consists of pressure and particle velocity sensors,which measure the three-dimensional acoustic particle velocity,as well as the pressure at one location at the same time.By preserving the amplitude and phase information of the pressure and particle velocity,they possess a number of advantages over traditional scalar sensors.Signal-to-noise ratio (SNR) gain (which is often called array gain) is one of such advantages and is always interested by all of us.But it is not unchangeable if the spatial correlation of the noise field varies.Much more important,it is difficult to be given if the noise becomes complex.In this paper,spatial correlation of the vector field of isotropic volume-noise and surface-generated noise has been introduced briefly.Based on the results,the combined SNR output of a vector linear array is investigated and the maximum gain is given in the specified noise.Computer simulation shows that the output of one array in the same noise is not the same in different gestures.And then we find the best gesture through SNR calculation and obtain the biggest gain,which has important meaning to guide how to deploy an array in practice.We also should use the array with respect to the characteristics of the real ambient noise,especially in anisotropic noise field.  相似文献   

2.
表面噪声矢量场空间相关特性射线声学建模(英文)   总被引:1,自引:0,他引:1  
Spatial correlation of sound pressure and particle velocity of the surface noise in horizontally stratified media was demonstrated,with directional noise sources uniformly distributed on the ocean surface.In the evaluation of particle velocity,plane wave approximation was applied to each incident ray.Due to the equivalence of the sound source correlation property and its directivity,solutions for the spatial correlation of the field were transformed into the integration of the coherent function generated by a single directional source.As a typical horizontally stratified media,surface noise in a perfect waveguide was investigated.Correlation coefficients given by normal mode and geometric models show satisfactory agreement.Also,the normalized covariance between sound pressure and the vertical component of particle velocity is proportional to acoustic absorption coefficient,while that of the surface noise in semi-infinitely homogeneous space is zero.  相似文献   

3.
An acoustic vector sensor (AVS) can capture more information than a conventional acoustic pressure sensor (APS). As a result, more output channels are required when multiple AVS are formed into arrays, making processing the data stream computationally intense. This paper proposes a new algorithm based on the propagator method for wideband coherent sources that eliminates eigen-decomposition in order to reduce the computational burden. Data from simulations and lake trials showed that the new algorithm is valid: it resolves coherent sources, breaks left/right ambiguity, and allows inter element spacing to exceed a half-wavelength.  相似文献   

4.
1 Introduction1 An acoustic vector sensor (AVS) simultaneously measures the acoustic pressure and the components of acoustic particle velocity which render the basis for developing new signal processing methods[1-2]. The higher processing gain can be obta…  相似文献   

5.
At present, the measurement of the near wave field of ships mostly relies on shipborne radar. The commonly used shipborne radar is incoherent and cannot obtain information on wave surface velocity. Therefore, the mathematical model of wave reconstruction is remarkably complex. As a new type of radar, coherent radar can obtain the radial velocity of the wave surface. Most wave surface reconstruction methods that use wave velocity are currently based on velocity potential. The difficulty of these ...  相似文献   

6.
To analyse a possible way to improve the propulsion performance of ships,the unstructured grid and the Reynolds Average Navier-Stokes equations were used to calculate the performance of a propeller and rudder fitted with additional thrust fins in the viscous flow field.The computational fluid dynamics software FLUENT was used to simulate the thrust and torque coefficient as a function of the advance coefficient of propeller and the thrust efficiency of additional thrust fins. The pressure and velocity flow behind the propeller was calculated. The geometrical nodes of the propeller were constituted by FORTRAN program and the NUMBS method was used to create a configuration of the propeller,which was then used by GAMMBIT to generate the calculation model. The thrust efficiency of fins was calculated as a function of the number of additional fins and the attack angles. The results of the calculations agree fairly well with experimental data,which shows that the viscous flow solution we present is useful in simulating the performance of propellers and rudders with additional fins.  相似文献   

7.
This paper describes an analytical investigation into synchrophasing, a vibration control strategy on a machinery installation in which two rotational machines are attached to a beam-like raft by discrete resilient isolators. Forces and moments introduced by sources are considered, which effectively represent a practical engineering system. Adjusting the relative phase angle between the machines has been theoretically demonstrated to greatly reduce the cost function, which is defined as the sum of velocity squares of attaching points on the raft at each frequency of interest. The effect of the position of the machine is also investigated. Results show that altering the position of the secondary source may cause a slight change to the mode shape of the composite system and therefore change the optimum phase between the two machines. Although the analysis is based on a one-dimensional Euler–Bernoulli beam and each machine is considered as a rigid-body, a key principle can be derived from the results. However, the factors that can influence the synchrophasing control performance would become coupled and highly complicated. This condition has to be considered in practice.  相似文献   

8.
In Fluid Structure Interaction(FSI) problems encountered in marine hydrodynamics, the pressure field and the velocity of the rigid body are tightly coupled. This coupling is traditionally resolved in a partitioned manner by solving the rigid body motion equations once per nonlinear correction loop, updating the position of the body and solving the fluid flow equations in the new configuration. The partitioned approach requires a large number of nonlinear iteration loops per time–step. In order to enhance the coupling, a monolithic approach is proposed in Finite Volume(FV) framework,where the pressure equation and the rigid body motion equations are solved in a single linear system. The coupling is resolved by solving the rigid body motion equations once per linear solver iteration of the pressure equation, where updated pressure field is used to calculate new forces acting on the body, and by introducing the updated rigid body boundary velocity in to the pressure equation. In this paper the monolithic coupling is validated on a simple 2D heave decay case. Additionally, the method is compared to the traditional partitioned approach(i.e. "strongly coupled" approach) in terms of computational efficiency and accuracy. The comparison is performed on a seakeeping case in regular head waves, and it shows that the monolithic approach achieves similar accuracy with fewer nonlinear correctors per time–step. Hence, significant savings in computational time can be achieved while retaining the same level of accuracy.  相似文献   

9.
一种基于PSO优化HWFCM的快速水下图像分割算法   总被引:3,自引:0,他引:3  
The S/N of an underwater image is low and has a fuzzy edge.If using traditional methods to process it directly,the result is not satisfying.Though the traditional fuzzy C-means algorithm can sometimes divide the image into object and background,its time-consuming computation is often an obstacle.The mission of the vision system of an autonomous underwater vehicle (AUV) is to rapidly and exactly deal with the information about the object in a complex environment for the AUV to use the obtained result to execute the next task.So,by using the statistical characteristics of the gray image histogram,a fast and effective fuzzy C-means underwater image segmentation algorithm was presented.With the weighted histogram modifying the fuzzy membership,the above algorithm can not only cut down on a large amount of data processing and storage during the computation process compared with the traditional algorithm,so as to speed up the efficiency of the segmentation,but also improve the quality of underwater image segmentation.Finally,particle swarm optimization (PSO) described by the sine function was introduced to the algorithm mentioned above.It made up for the shortcomings that the FCM algorithm can not get the global optimal solution.Thus,on the one hand,it considers the global impact and achieves the local optimal solution,and on the other hand,further greatly increases the computing speed.Experimental results indicate that the novel algorithm can reach a better segmentation quality and the processing time of each image is reduced.They enhance efficiency and satisfy the requirements of a highly effective,real-time AUV.  相似文献   

10.
The aim of the present study is to improve the capabilities and precision of a recently introduced Sea Surface Acoustic Simulator(SSAS) developed based on optimization of the Helmholtz–Kirchhoff–Fresnel(HKF) method. The improved acoustic simulator, hereby known as the Modified SSAS(MSSAS), is capable of determining sound scattering from the sea surface and includes an extended Hall–Novarini model and optimized HKF method. The extended Hall–Novarini model is used for considering the effects of sub-surface bubbles over a wider range of radii of sub-surface bubbles compared to the previous SSAS version. Furthermore, MSSAS has the capability of making a three-dimensional simulation of scattered sound from the rough bubbly sea surface with less error than that of the Critical Sea Tests(CST) experiments. Also, it presents scattered pressure levels from the rough bubbly sea surface based on various incident angles of sound. Wind speed, frequency, incident angle, and pressure level of the sound source are considered as input data, and scattered pressure levels and scattering coefficients are provided. Finally, different parametric studies were conducted on wind speeds, frequencies, and incident angles to indicate that MSSAS is quite capable of simulating sound scattering from the rough bubbly sea surface, according to the scattering mechanisms determined by Ogden and Erskine. Therefore, it is concluded that MSSAS is valid for both scattering mechanisms and the transition region between them that are defined by Ogden and Erskine.  相似文献   

11.
声矢量传感器可以同时获取声波场的声压和振速信息.因振速是一个矢量,因而单个矢量传感器就能够提供声场的方位信息,为小尺度声传感器的设计提供了可能.论文首先对单矢量传感器目标定向的原理进行了研究,在单频信号处理的基础上扩展到实际中的宽带随机信号的处理,并进行了仿真分析研究.  相似文献   

12.
为了提高矢量传感器阵列的方位估计性能,提出了一种基于空间域数据拟合的矢量阵多目标分辨算法,通过利用已知的空间域数据信息,构造出新的声压与振速的接收数据协方差矩阵,在多目标分辨能力上对经典MUSIC算法予以改进。理论分析和计算机仿真表明,在各向同性噪声场中,新算法在提高多目标分辨能力方面比传统方法更有效。  相似文献   

13.
矢量声压振速联合处理是建立在信号的声压和质点振速相位基础上,海洋环境边界对声传播的影响将改变矢量声场声压和质点振速的幅度和相位特性。文章根据南海环境条件和水下目标辐射噪声测量采用矢量简正波理论估算海面非相干偶极子噪声源和水下点声源矢量场的幅度和相位随深度的变化,并对矢量水听器测量系统获取的南海典型深度上的背景噪声数据进行了分析。结果表明:深海背景噪声声压谱级在500 Hz以下基本上不随深度变化,在500 Hz-3 kHz频段浅深度背景噪声声压谱级略高于较深深度的背景噪声声压谱级;背景噪声的垂直质点振速谱级要小于声压和水平质点振速谱级。  相似文献   

14.
矢量水听器由声压水听器和振速水听器复合而成,可以共点同时测量声场中的声压与振速.RCB(RobustCapon Beamforming)是最近出现的一种宽容自适应波束形成算法,该算法直接对导向矢量进行估计,并用估计的导向矢量作波束形成,有效避免了导向矢量失配而导致的性能下降.通过推导秩亏情况下的RCB,将其应用到矢量阵,海上试验结果表明了该方法的有效性.  相似文献   

15.
中段接力制导作战是协同作战的一种具体协同模式。提出基于平台间雷达互测机制与导航信息的目标指令参数误差估计模型。根据平台间的雷达互测机制得到的平台量测和两平台惯导设备输出的自身定位信息,在发射平台的传感器局部坐标系中表示出目标和平台的位置坐标,实现多传感器数据位置对准,并对各平台的设备偏差进行估计和补偿,消除系统误差的影响,提高了各平台的传感器测量数据精度。  相似文献   

16.
矢量水听器可有效抑制各向同性的背景噪声干扰,能同时共点地拾取声场的声压标量和振速矢量信息。这些信息的偶次阶矩组成了以各个目标的声强和方位为未知数的非线性方程组。为了求解该方程组,研究了具有全局最优化概率搜索的快速方法:遗传算法和小生境遗传算法,并对两者的性能进行比较。仿真试验的结果证明了算法的可行性,即基于小生境遗传算法能够实现单个矢量水听器进行多个非相干源目标的方位估计。为了提高弱目标的方位估计精度,又提出了二次小生境搜索方法。  相似文献   

17.
1 Introduction1 New methods of parameter estimation are possible by the appearance of vector transducer. A new method of multi-parameters estimation by single vector transducer was presented in Ref.[1].The correlation of pressure and particle velocity in …  相似文献   

18.
This paper proposes a heading fault tolerance scheme for operation-level underwater robots subject to external interference. The scheme is based on a double-criterion fault detection method using a redundant structure of a dual electronic compass. First, two subexpansion Kalman filters are set up to fuse data with an inertial attitude measurement system. Then, fault detection can effectively identify the fault sensor and fault source. Finally, a fault-tolerant algorithm is used to isolate and alarm the faulty sensor. The program can effectively detect the constant magnetic field interference, change the magnetic field interference and small transient magnetic field interference, and conduct fault tolerance control in time to ensure the heading accuracy of the system. Test verification shows that the system is practical and effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号