首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper proposes an advanced steering system that adaptively varies the static gain and dynamics of the steering system. The steering system gain is adjusted, depending on whether the driver is in an aggressive or leisurely driving mood. The steering system dynamics is so designed that the command mode of the steering system will be either a rate-command or an attitude-command according to the lateral control task performed by the driver. The recognition system for lateral control tasks, a lane-following or lane-change task is proposed. The findings of simulator tests indicate proposed advanced steering system would remarkably improve the vehicle handling qualities.  相似文献   

2.
This paper proposes an advanced steering system that adaptively varies the static gain and dynamics of the steering system. The steering system gain is adjusted, depending on whether the driver is in an aggressive or leisurely driving mood. The steering system dynamics is so designed that the command mode of the steering system will be either a rate-command or an attitude-command according to the lateral control task performed by the driver. The recognition system for lateral control tasks, a lane-following or lane-change task is proposed. The findings of simulator tests indicate proposed advanced steering system would remarkably improve the vehicle handling qualities.  相似文献   

3.
This paper presents a lateral driver model for vehicle–driver closed-loop simulation at the limits of handling. An appropriate driver model can be used to evaluate the performance of vehicle chassis control systems via computer simulations before vehicle tests which incurs expenses especially at the limits of handling. The driver model consists of two parts. The first part is an upper-level controller employing force-based approach to reduce the number of unknown vehicle parameters. The feedforward part of the upper controller has been designed by using the centre of percussion. The feedback part aims to minimise ‘tangential error’, defined as the sum of body slip angle and yaw error, to match vehicle direction and road heading angle. The part is designed to regenerate an appropriate skid motion similar to that of a professional driver at the limits. The second part is a lower-level controller which converts the desired front lateral force to steering wheel angle. The lower-level controller also consists of feedforward and feedback parts. A two-degree-of-freedom bicycle model-based feedforward part provides nominal steering wheel angle, and the feedback part aims to eliminate unmodelled error. The performance of the lateral driver model has been investigated via computer simulations. It has been shown that the steering behaviours of the proposed driver model are quite close to those of a professional driver at the limits. Compared with the previously developed lateral driver models, the proposed lateral driver model shows good tracking performance at the limits of handling.  相似文献   

4.
车道保持控制系统是汽车安全辅助驾驶的重要组成部分,可有效提高汽车主动安全性、避免车辆无意识地偏离本车道。目前,大部分车道保持控制系统在工作时将驾驶人的操作视为外界干扰,没有考虑人机共驾阶段下驾驶人与控制系统的控制权分配问题,易造成人机冲突、影响驾驶人的驾驶感受。论文兼顾驾驶人与辅助控制系统各自优势,基于人机共驾技术对车道保持控制系统进行研究。构建基于安全行驶区域与最晚预警边界相结合的车道偏离决策模型,在保证其预警精度的同时降低计算复杂性,根据车辆行驶状态和路面附着系数动态调整预警阈值;研究串级MPC-PID控制策略实现对车辆横向位置的控制,将最优问题转化为二次规划求得目标前轮转角,利用PID算法完成对目标前轮转角的跟踪;引入共驾系数对车辆的控制权进行分配,研究共驾系数分配模型,以车辆状态误差和驾驶人转向力矩作为模糊控制的输入变量、共驾系数作为输出变量,降低辅助控制系统与驾驶人之间的冲突;最后,利用CarSim与Simulink联合仿真对所研究的控制策略进行仿真验证,结果表明共驾系数能够根据驾驶人的操作和车辆运行状态的变化实现动态调整,辅助控制力矩与驾驶人输入力矩变化趋势相同,在保留驾驶人一定操作的基础下可避免车辆偏离车道、降低人机冲突。  相似文献   

5.
We propose a steering control algorithm for autonomous backward driving in a narrow corridor. Passable spaces are detected using a stereo camera, and the steering angle is controlled by a model predictive controller (MPC). For passable space detection, an UV-disparity map is calculated from the original disparity map. Information regarding passable spaces collected by the stereo camera is used in steering control. Backward driving requires the driver’s preemptive actions, which can be learned by experience because of the non-intuitive responses (the initial motion of the vehicle is opposite to the driver’s steering angle input). This occurs because a backward-driving vehicle is a non-minimum phase system. One of the most popular steering control algorithms is Stanley method, which is based on the feedback of lateral displacement error and heading angle error. The method is very intuitive and works well for forward driving, but it exhibits significant undershoot for backward driving cases. Furthermore, the method does not explicitly consider any constraints on control inputs and states. We designed a steering controller based on the MPC technique that requires future information but can handle constraints explicitly. Because we have near-future information from the stereo camera under limited passable spaces, MPC can be effectively implemented. We performed several simulations and experiments to show the performance and superiority of the suggested method over a simple feedback-based control algorithm.  相似文献   

6.
When driving in curves, how do drivers use the force appearing on the steering wheel? As it carries information related to lateral acceleration, this force could be necessary for drivers to tune their internal model of vehicle dynamics; alternatively, being opposed to the drivers' efforts, it could just help them stabilize the steering wheel position. To assess these two hypotheses, we designed an experiment on a motion-based driving simulator. The steering characteristics of the vehicle were modified in the course of driving, unknown to drivers. Results obtained with standard drivers showed a surprisingly wide range of adaptation, except for exaggerated modifications of the steering force feedback. A two-level driver model, combining a preview of vehicle dynamics and a neuromuscular steering control, reproduces these experimental results qualitatively and indicates that adaptation occurs at the haptic level rather than in the internal model of vehicle dynamics. This effect is related to other theories on the manual control of dynamics systems, wherein force feedback characteristics are abstracted at the position control level. This research also illustrates the use of driving simulation for the study of driver behavior and future intelligent steering assistance systems.  相似文献   

7.
When driving in curves, how do drivers use the force appearing on the steering wheel? As it carries information related to lateral acceleration, this force could be necessary for drivers to tune their internal model of vehicle dynamics; alternatively, being opposed to the drivers' efforts, it could just help them stabilize the steering wheel position. To assess these two hypotheses, we designed an experiment on a motion-based driving simulator. The steering characteristics of the vehicle were modified in the course of driving, unknown to drivers. Results obtained with standard drivers showed a surprisingly wide range of adaptation, except for exaggerated modifications of the steering force feedback. A two-level driver model, combining a preview of vehicle dynamics and a neuromuscular steering control, reproduces these experimental results qualitatively and indicates that adaptation occurs at the haptic level rather than in the internal model of vehicle dynamics. This effect is related to other theories on the manual control of dynamics systems, wherein force feedback characteristics are abstracted at the position control level. This research also illustrates the use of driving simulation for the study of driver behavior and future intelligent steering assistance systems.  相似文献   

8.
This paper describes a lateral disturbance compensation algorithm for an application to a motor-driven power steering (MDPS)-based driver assistant system. The lateral disturbance including wind force and lateral load transfer by bank angle reduces the driver's steering refinement and at the same time increases the possibility of an accident. A lateral disturbance compensation algorithm is designed to determine the motor overlay torque of an MDPS system for reducing the manoeuvreing effort of a human driver under lateral disturbance. Motor overlay torque for the compensation of driver's steering torque induced by the lateral disturbance consists of human torque feedback and feedforward torque. Vehicle–driver system dynamics have been investigated using a combined dynamic model which consists of a vehicle dynamic model, driver steering dynamic model and lateral disturbance model. The human torque feedback input has been designed via the investigation of the vehicle–driver system dynamics. Feedforward input torque is calculated to compensate additional tyre self-aligning torque from an estimated lateral disturbance. The proposed compensation algorithm has been implemented on a developed driver model which represents the driver's manoeuvreing characteristics under the lateral disturbance. The developed driver model has been validated with test data via a driving simulator in a crosswind condition. Human-in-the-loop simulations with a full-scale driving simulator on a virtual test track have been conducted to investigate the real-time performance of the proposed lateral disturbance compensation algorithm. It has been shown from simulation studies and human-in-the-loop simulation results that the driver's manoeuvreing effort and a lateral deviation of the vehicle under the lateral disturbance can be significantly reduced via the lateral disturbance compensation algorithm.  相似文献   

9.
Based on vehicle constraints and known human operator characteristics, a strategy model was postulated for describing behavior in the lane keeping task. This model includes nonlinear thresholds operating on vehicle yaw and lateral translation, random input sources to account for spurious driver activity, and smoothing to account for driver response lag. The output of the model is steering wheel position

To determine model parameters and model suitability in describing driver behavior, recordings were made for driver-subjects performing a lane-keeping task in a moving base driving simulator having a computer generated display. A procedure involving both analytic and experimental techniques was then developed for determining the model parameters of each driver

Statistical comparisons and visual inspections made between driver-vehicle and model-vehicle time histories indicate a high degree of correspondence. Models such as these show promise in obtaining a better understanding of driver behavior and driver-vehicle response by incorporating nonlinear elements in the driver model.  相似文献   

10.
为了研究车辆跟驰过程中驾驶人认知分心与驾驶安全的关系,采用驾驶模拟器构建城市道路车辆跟驰场景,并设计3种难度等级的认知分心次任务,采集35名被试驾驶人在试验过程中的方向盘转角、油门开度、制动踏板力等操作参数,以及车辆位置、速度、加速度等车辆运动参数。采用重复测量一般线性模型,分析不同等级认知分心对上述参数的影响。研究结果表明:在横向操控方面,随着认知分心程度增高,方向盘回转率增大,但车辆横向位置标准差减小,表明驾驶人处于认知分心时,采取频繁修正方向盘的补偿方式,降低车辆横向位置波动,过度补偿车辆横向安全性,且该补偿行为与认知分心程度正相关;在纵向操控方面,认知分心时,油门开度、制动踏板位置方差增大,且制动踏板位置均值增大,同时车头间距及时距未观察到显著性变化,表明认知分心时驾驶人采取频繁操作油门、制动踏板,增大制动幅度等方式进行补偿,使车头间距及车头时距等表征车辆纵向跟车安全性参数处于正常驾驶水平,但加速度标准差增大,表明跟车稳定性降低。研究结果为涉及分心的人车交互装置优化设计及考虑分心状态的驾驶人状态管理系统开发提供了一定的理论依据。  相似文献   

11.
An adaptive lateral preview driver model   总被引:1,自引:0,他引:1  
Successful modelling and simulation of driver behaviour is important for the current industrial thrust of computer-based vehicle development. The main contribution of this paper is the development of an adaptive lateral preview human driver model. This driver model template has a few parameters that can be adjusted to simulate steering actions of human drivers with different driving styles. In other words, this model template can be used in the design process of vehicles and active safety systems to assess their performance under average drivers as well as atypical drivers. We assume that the drivers, regardless of their style, have driven the vehicle long enough to establish an accurate internal model of the vehicle. The proposed driver model is developed using the adaptive predictive control (APC) framework. Three key features are included in the APC framework: use of preview information, internal model identification and weight adjustment to simulate different driving styles. The driver uses predicted vehicle information in a future window to determine the optimal steering action. A tunable parameter is defined to assign relative importance of lateral displacement and yaw error in the cost function to be optimized. The model is tuned to fit three representative drivers obtained from driving simulator data taken from 22 human drivers.  相似文献   

12.
Current vehicle dynamic control systems from simple yaw control to high-end active steering support systems are designed to primarily actuate on the vehicle itself, rather than stimulate the driver to adapt his/her inputs for better vehicle control. The driver though dictates the vehicle’s motion, and centralizing him/her in the control loop is hypothesized to promote safety and driving pleasure. Exploring the above statement, the goal of this study is to develop and evaluate a haptic steering support when driving near the vehicle’s handling limits (Haptic Support Near the Limits; HSNL). The support aims to promote the driver’s perception of the vehicle’s behaviour and handling capacity (the vehicle’s internal model) by providing haptic (torque) cues on the steering wheel. The HSNL has been evaluated in (a) driving simulator tests and (b) tests with a vehicle (Opel Astra G/B) equipped with a variable steering feedback torque system. Drivers attempted to achieve maximum velocity while trying to retain control in a circular skid-pad. In the simulator (a) 25 subjects drove a vehicle model parameterised as the Astra on a dry skid-pad while in (b) 17 subjects drove the real Astra on a wet skid-pad. Both the driving simulator and the real vehicle tests led to the conclusion that the HSNL assisted subjects to drive closer to the designated path while achieving effectively the same speed. With the HSNL the drivers operated the tires in smaller slip angles and hence avoided saturation of the front wheels’ lateral forces and excessive understeer. Finally, the HSNL reduced their mental and physical demand.  相似文献   

13.
A robust yaw stability control design based on active front steering control is proposed for in-wheel-motored electric vehicles with a Steer-by-Wire (SbW) system. The proposed control system consists of an inner-loop controller (referred to in this paper as the steering angle-disturbance observer (SA-DOB), which rejects an input steering disturbance by feeding a compensation steering angle) and an outer-loop tracking controller (i.e., a PI-type tracking controller) to achieve control performance and stability. Because the model uncertainties, which include unmodeled high frequency dynamics and parameter variations, occur in a wide range of driving situations, a robust control design method is applied to the control system to simultaneously guarantee robust stability and robust performance of the control system. The proposed control algorithm was implemented in a CaSim model, which was designed to describe actual in-wheel-motored electric vehicles. The control performances of the proposed yaw stability control system are verified through computer simulations and experimental results using an experimental electric vehicle.  相似文献   

14.
In this paper, a lane departure detection method is studied and evaluated via a professional vehicle dynamics software. Based on a robust fuzzy observer designed with unmeasurable premise variables with unknown inputs, the road curvature is estimated and compared with the vehicle trajectory curvature. The difference between the two curvatures is used by the proposed algorithm as the first driving risk indicator. To reduce false alarms and take into account the driver corrections, a second driving risk indicator is considered, which is based on the steering dynamics, and it gives the time to the lane keeping. The used nonlinear model deduced from the vehicle lateral dynamics and a vision system is represented by an uncertain Takagi–Sugeno fuzzy model. Taking into account the unmeasured variables, an unknown input fuzzy observer is then proposed. Synthesis conditions of the proposed fuzzy observer are formulated in terms of linear matrix inequalities using Lyapunov method. The proposed approach is evaluated under different driving scenarios using a software simulator. Simulation results show good efficiency of the proposed method.  相似文献   

15.
The article reports an experimental study of driver steering control behaviour in a lane-change manoeuvre. Eight test subjects were instrumented with electromyography to measure muscle activation and co-contraction. Each subject completed 30 lane-change manoeuvres with one vehicle on a fixed-base driving simulator. For each driver, the steering torque feedback characteristic was changed after every ten manoeuvres; the response of the vehicle to steering angle inputs was not changed. Drivers' control strategies were found to be robust to changes in steering torque feedback. Path-following errors, muscle activity and muscle co-contraction all reduce with the number of lane-changes performed by the driver, suggesting the existence of a learning process. Comparing the test subjects, there was some evidence that high levels of co-contraction were used to allow high-frequency steering inputs to be generated. The results contribute to the understanding of vehicle–driver (and more generally, human–machine) dynamic interaction.  相似文献   

16.
Despite many advances in vehicle safety technology, traffic fatalities remain a devastating burden on society. With over two-thirds of all fatal single-vehicle crashes occurring off the roadway, run-off-road (ROR) crashes have become the focus of much roadway safety research. Current countermeasures, including roadway infrastructure modifications and some on-board vehicle safety systems, remain limited in their approach as they do not directly address the critical factor of driver behaviour. It has been shown that ROR crashes are often the result of poor driver performance leading up to the crash. In this study, the performance of two control algorithms, sliding control and linear quadratic control, was investigated for use in an autonomous ROR vehicle recovery system. The two controllers were simulated amongst a variety of ROR conditions where typical driver performance was inadequate to safely operate the vehicle. The sliding controller recovered the fastest within the nominal conditions but exhibited large variability in performance amongst the more extreme ROR scenarios. Despite some small sacrifices in lateral error and yaw rate, the linear quadratic controller demonstrated a higher level of consistency and stability amongst the various conditions examined. Overall, the linear quadratic controller recovered the vehicle 25% faster than the sliding controller while using 70% less steering, which combined with its robust performance, indicates its high potential as an autonomous ROR countermeasure.  相似文献   

17.
Automated driving has received a broad of attentions from the academia and industry, since it is effective to greatly reduce the severity of potential traffic accidents and achieve the ultimate automobile safety and comfort. This paper presents an optimal model-based trajectory following architecture for highly automated vehicle in its driving tasks such as automated guidance or lane keeping, which includes a velocity-planning module, a steering controller and a velocity-tracking controller. The velocity-planning module considering the optimal time-consuming and passenger comforts simultaneously could generate a smooth velocity profile. The robust sliding mode control (SMC) steering controller with adaptive preview time strategy could not only track the target path well, but also avoid a big lateral acceleration occurred in its path-tracking progress due to a fuzzy-adaptive preview time mechanism introduced. In addition, an SMC controller with input–output linearisation method for velocity tracking is built and validated. Simulation results show this trajectory following architecture are effective and feasible for high automated driving vehicle, comparing with the Driver-in-the-Loop simulations performed by an experienced driver and novice driver, respectively. The simulation results demonstrate that the present trajectory following architecture could plan a satisfying longitudinal speed profile, track the target path well and safely when dealing with different road geometry structure, it ensures a good time efficiency and driving comfort simultaneously.  相似文献   

18.
The article reports an experimental study of driver steering control behaviour in a lane-change manoeuvre. Eight test subjects were instrumented with electromyography to measure muscle activation and co-contraction. Each subject completed 30 lane-change manoeuvres with one vehicle on a fixed-base driving simulator. For each driver, the steering torque feedback characteristic was changed after every ten manoeuvres; the response of the vehicle to steering angle inputs was not changed. Drivers' control strategies were found to be robust to changes in steering torque feedback. Path-following errors, muscle activity and muscle co-contraction all reduce with the number of lane-changes performed by the driver, suggesting the existence of a learning process. Comparing the test subjects, there was some evidence that high levels of co-contraction were used to allow high-frequency steering inputs to be generated. The results contribute to the understanding of vehicle-driver (and more generally, human-machine) dynamic interaction.  相似文献   

19.
This paper describes a drive controller designed to improve the lateral vehicle stability and maneuverability of a 6-wheel drive / 6-wheel steering (6WD/6WS) vehicle. The drive controller consists of upper and lower level controllers. The upper level controller is based on sliding control theory and determines both front and middle steering angle, additional net yaw moment, and longitudinal net force according to the reference velocity and steering angle of a manual drive, remotely controlled, autonomous controller. The lower level controller takes the desired longitudinal net force, yaw moment, and tire force information as inputs and determines the additional front steering angle and distributed longitudinal tire force on each wheel. This controller is based on optimal distribution control and takes into consideration the friction circle related to the vertical tire force and friction coefficient acting on the road and tire. Distributed longitudinal/lateral tire forces are determined as proportion to the size of the friction circle according to changes in driving conditions. The response of the 6WD/6WS vehicle implemented with this drive controller has been evaluated via computer simulations conducted using the Matlab/Simulink dynamic model. Computer simulations of an open loop under turning conditions and a closed-loop driver model subjected to double lane change have been conducted to demonstrate the improved performance of the proposed drive controller over that of a conventional DYC.  相似文献   

20.
An existing driver–vehicle model with neuromuscular dynamics is improved in the areas of cognitive delay, intrinsic muscle dynamics and alpha–gamma co-activation. The model is used to investigate the influence of steering torque feedback and neuromuscular dynamics on the vehicle response to lateral force disturbances. When steering torque feedback is present, it is found that the longitudinal position of the lateral disturbance has a significant influence on whether the driver’s reflex response reinforces or attenuates the effect of the disturbance. The response to angle and torque overlay inputs to the steering system is also investigated. The presence of the steering torque feedback reduced the disturbing effect of torque overlay and angle overlay inputs. Reflex action reduced the disturbing effect of a torque overlay input, but increased the disturbing effect of an angle overlay input. Experiments on a driving simulator showed that measured handwheel angle response to an angle overlay input was consistent with the response predicted by the model with reflex action. However, there was significant intra- and inter-subject variability. The results highlight the significance of a driver’s neuromuscular dynamics in determining the vehicle response to disturbances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号