首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
质子交换膜燃料电池(PEMFC)的发展显示出了它成为清洁、高效和可靠电源的潜力。双极板(BP)作为PEMFC的关键部件之一,具有提供电气连接、输送反应气体、消散反应热、去除副产物的作用,但也是制约PEMFC成本的主要因素之一。根据双极板材料的不同可以分为金属双极板、石墨双极板和复合材料双极板,本文综述了双极板材料(金属、无孔石墨和复合材料)及其制备工艺。其中,金属双极板因其优异的机械和物理性能,与无孔石墨及复合材料相比具有较强的成本优势,在乘用车应用中备受关注,但其制造工艺和耐腐蚀性是金属双极板的主要关注点。未来,开发出优良的耐蚀性和导电性涂层或新型的双极板金属材料将极大地促进PEMFC在乘用车领域的应用。  相似文献   

2.
质子交换膜燃料电池(PEMFC)具有高效节能、环境友好、比功率高及起动快等优点,越来越受到各国关注。文章重点叙述了PEMFC关键技术的研究进展,主要包括质子交换膜(PEM)、电催化剂和双极板的研究进展。开发新型质子交换膜材料并改进其制备工艺;提高催化剂性能,降低铂金属用量,寻找廉价合适的非铂族催化材料;选择合适的双极板材料及先进的制备工艺是今后质子交换膜燃料电池关键技术的发展方向。  相似文献   

3.
随着近年来的不断研究,质子交换膜燃料电池的应用也相对成熟,而双极板作为关键部件,其材料和制造方法上有了越来越多的选择。目前研究最多的材料是复合材料以及金属材料。为了找到质子交换膜燃料电池双极板未来的制造方向,进一步降低燃料电池双极板的成本,扩大制造规模,本文列举并探讨双极板制造中关键因素,分别介绍复合材料和金属材料,包含材料类型和成型方法,列举金属材料目前已有的涂层类型,并指出双极板生产制造的未来方向。  相似文献   

4.
“双碳”政策大大推动了氢能的发展,而燃料电池作为氢能利用的最佳方式,迎来了新一轮的研究与产业热潮,尤其是商业化较为成熟的车用质子交换膜燃料电池(PEMFC)引发了众多关注。膜电极(MEA)和双极板(BPP)是PEMFC电堆的两大核心部件,决定了电堆的性能和成本。水热管理和低温启动技术对于电堆性能的实现和实际应用的推广也起到了至关重要的作用。本文全面深入地阐述了车用PEMFC膜电极、双极板、水热管理、低温启动等技术对电堆性能、寿命和成本的影响规律,进一步指出各项技术的发展趋势。除此之外,车用燃料电池的商业化应用短期将围绕公共交通以及重型商用车等大型车辆开展,而乘用车对电堆的功率密度和成本提出了更高的要求。  相似文献   

5.
作为质子交换膜燃料电池的关键元件,双极板具备支持电池堆、隔挡燃料与氧化剂、汇集并传递电流、疏导反应气体与产物水的流通以及交换热力等功用,因此双极板的优劣将决定电池的整体性能.不锈钢的抗压能力强、传热好、成型工艺简单,是首选的双极板材料,但其耐化学性差且表层钝化膜导致电池功率衰减严重,故须在不锈钢表面添加改性涂层.  相似文献   

6.
《汽车工程》2021,43(6)
质子交换膜燃料电池作为车载新型动力源具有广阔的应用前景而备受关注。流场板是燃料电池的核心部件之一,起分配反应气体、移除水分与杂质和传导电子等作用。目前对质子交换膜燃料电池流场方面的研究,大多针对常规流道进行了尺寸和流场布置方式的优化,部分研究在流道内部添加不同形式的堵块以增强气体传质,或将多孔介质材料应用于流场板,或设计新型的三维网格流场结构,通过此类方式来优化燃料电池的水热管理,强化传质效果以提高燃料电池的性能。本文中对这些研究进行归纳总结,并得出若干结论。  相似文献   

7.
2014年,丰田汽车公司推出了全球首款商用燃料电池汽车(FCV)MIRAI。与第1代MIRAI车型使用的燃料电池(FC)电堆相比,新款MIRAI车型使用的燃料电池堆采用了新的双极板流道和改进的电极,成为世界上体积功率密度最高的产品之一。  相似文献   

8.
膜电极和双极板是影响质子交换膜燃料电池性能的关键组件,也是质子交换膜燃料电池实现商业化的必要条件。文章对质子交换膜燃料电池的工作原理、结构进行了分析,重点对质子交换膜燃料电池的膜电极、双极板等几大关键部件进行了讨论。  相似文献   

9.
燃料电池发动机系统空气加湿器实验研究   总被引:1,自引:0,他引:1  
由于质子交换膜燃料电池(PEMFC)性能受反应气体的湿度影响很大,进气湿度必须加以控制,其大致范围应高于80%,低于100%。电解质的质子传导能力与水含量成正比,但水分含量又不能过高,否则会引起电解质淹没。当PEMFC在不加湿的情况下,工作温度升高60℃时,反应气体会非常干燥,这对质子交换膜是灾难性的,所以对反应气体加湿必不可少。通过实验证明了某型加湿器能够满足车用燃料电池发动机的需要。  相似文献   

10.
<正>面对汽车行业的电气化趋势,以传统内燃机业务起家的爱尔铃克铃尔近年来正利用其在材料领域的技术储备,积极布局未来发展。在2019上海车展上,爱尔铃克铃尔展示了应用于新能源汽车的燃料电池组件和锂电池系统。NM12膜燃料电池堆全球首发爱尔铃克铃尔展示了一款基于金属双极板,适用于乘用车和商用车的全新质子交换膜燃料电池堆——NM12。这款基于金属双极板的质子交换膜燃料电池堆由300节电池组成,输出功率达  相似文献   

11.
根据质子交换膜燃料电池(PEMFC)电堆起动和停机的控制策略,建造了PEMFC电堆低温起动平台。用20mm厚的软橡塑泡沫、聚苯乙烯和真空绝缘板将电堆密封,在-10℃环境舱内分别进行保温试验研究;当电堆中最冷的电池阴极催化层的温度达到触发温度(0℃)时,起动并加载PEMFC电堆至某一低温起动试验工况。试验结果揭示了PEMFC电堆低温起动的某些规律,为燃料电池汽车的商业化提供技术基础。  相似文献   

12.
双极板作为质子交换膜燃料电池的核心组件之一,对燃料电池的性能、使用寿命以及生产成本有重要影响。本文通过对国内外金属双极板连接技术研究现状的分析归纳,讨论了金属双极板连接技术存在的问题,指明了金属双极板连接技术的发展趋势。  相似文献   

13.
双极板作为质子交换膜燃料电池的核心组件之一,对燃料电池的性能、使用寿命以及生产成本有重要影响。本文通过对国内外金属双极板涂层技术研究现状进行分析归纳,讨论金属双极板涂层技术存在的问题,点明金属双极板涂层技术的发展趋势。  相似文献   

14.
本文介绍了燃料电池的基本结构和工作原理,从结构设计的角度对当前质子交换膜燃料电池流道的研究现状进行了分析,包括传统流道的结构设计、增设隔板的流道结构设计和新型流道结构设计。研究内容对车用燃料电池的流道研发与应用具有一定的指导意义。  相似文献   

15.
针对国内外氢燃料电池汽车发动机的电堆及其关键组件、关键零部件及水热管理技术,总结了其研究现状和发展趋势。在电堆及其关键组件研究方面,为进一步提高电堆功率,降低电堆成本,可着手于有序化膜电极制备工艺的研发,发展低铂催化剂以及探究金属双极板及其涂层技术。在关键零部件研发方面,空气压缩机和氢气循环泵将朝着大流量、小型化等方向发展。在水热管理研究方面,优化双极板流场和气体扩散层的微孔结构,采用复合控制策略等方式有利于燃料电池的水热管理。  相似文献   

16.
质子交换膜燃料电池(PEMFC)移动电源技术   总被引:2,自引:0,他引:2  
燃料电池(FC)是一个新兴的研究领域。质子交换膜燃料电池(PEMFC)技术目前正处于实验室研究开发和逐渐走向实用化的阶段。介绍了PEMFC的单电池组成和工作原理,分析了PEMFC的技术发展及其特点,提出了新型PEMFC移动电源系统的体系结构,详细研究了PEMFC移动电源研发的关键技术,并指出了PEMFC移动电源技术的发展趋势。  相似文献   

17.
范韬 《北京汽车》2009,(4):40-43
质子交换膜燃料电池(PEMFC)是具有能源革命意义的新一代能源动力系统。被认为是继蒸汽机和内燃机之后的第三代动力系统,对解决“能源短缺”和“环境污染”这两大世界性难题具有重要意义。文中介绍了质子交换膜燃料电池的结构、工作原理以及关键技术。并阐述其在国内外的研究及应用情况。  相似文献   

18.
气体扩散层(GDL)是质子交换膜燃料电池(PEMFC)的重要组件,在燃料电池电堆中起到电子传导、反应气体传输、电堆水热管理的作用.近年来,随着质子交换膜燃料电池的开发和应用愈发广泛,气体扩散层的开发已成为加快燃料电池产业落地的关键因素.重点阐述了质子交换膜燃料电池气体扩散层的市场发展、制备技术及工艺优化问题,评价了最新...  相似文献   

19.
使用寿命是限制质子交换膜燃料电池(PEMFC)商业化的主要问题。汽车复杂的工况条件加速了燃料电池的老化,因此,需要全面了解PEMFC各种工况下性能衰减机制,以促进其商业化发展。文章主要讨论了启停工况的相关研究背景和进展,分析了燃料电池在启停过程中的气体分布情况,并总结了导致燃料电池性能衰减的主要机理。最后,文章介绍了启停工况下的缓解策略,包括材料改进和系统控制,为解决PEMFC性能衰减问题和提高燃料电池寿命提供依据。  相似文献   

20.
质子交换膜燃料电池(PEMFC)目前正处于实验室研究开发和逐渐走向实用化规模化的阶段。针对PEMFC长期工作稳定性差和难于控制的这一问题,在介绍PEMFC工作原理和技术发展的基础上,分析了温度分布参数对PEMFC电池性能的影响,从应用的角度出发,研究了PEMFC温度控制的特点,提出了PEMFC温度控制的新方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号