共查询到20条相似文献,搜索用时 109 毫秒
1.
邓浩楠;赵治国;赵坤;李刚;于勤 《汽车工程》2024,(8):1357-1369
路面附着系数对车辆动力学控制性能有重要影响,为准确实时估计路面附着系数,提高算法在不同路面及工况下的估计精度与收敛速度,本文针对分布式四轮驱动车辆,结合7自由度车辆动力学模型和Dugoff轮胎模型,提出了一种基于交互式多模型的自适应无迹卡尔曼滤波(IMM-AUKF)路面附着系数估计方法,首先将改进的Sage-Husa噪声估计器引入到无迹卡尔曼滤波(UKF)算法中,构建了自适应无迹卡尔曼滤波(AUKF)观测器,以对测量噪声进行实时更新并保证其协方差矩阵的正定性,同时提高新观测数据的权重,并增强算法的实时跟踪精度和稳定性;然后通过选择不同的观测变量,分别构建了车辆纵向行驶工况AUKF观测器和横纵向耦合工况AUKF观测器,并利用交互式多模型(IMM)算法进行观测器模型的切换,进而实现算法在车辆不同行驶工况下路面附着系数的准确估计。高附、低附、对接以及对开等路面仿真试验及实车道路试验结果表明,所提出的IMM-AUKF算法相比于传统的UKF算法,具有更高的估计精度与更快的收敛速度,能够适应不同工况下路面附着系数的实时准确估计。 相似文献
2.
为提高车辆在不同噪声条件下的路面附着系数估计精度;文章提出了基于鲸鱼优化的无迹卡尔曼滤波(UKF)算法;对噪声协方差矩阵进行实时寻优。采用最优噪声协方差矩阵和 UKF;利用车辆动力学方程进行路面附着系数估计。仿真结果表明;文章所提出的基于鲸鱼优化的 UKF 算法;能够有效提升估计器的鲁棒性和最终路面附着系数估计结果的精度。 相似文献
3.
4.
5.
线控转向( SBW)系统采用电子元件代替了转向盘到转向车轮之间的机械连接,其车轮回正力矩较传统汽车更容易获得.本文中通过建立SBW系统动力学模型和利用车轮回正力矩信息,采用双扩展卡尔曼滤波(DEKF)算法对汽车状态和路面附着系数进行联合估计.通过DEKF估算与CarSim仿真结果的对比,验证了联合估计算法的有效性. 相似文献
6.
7.
在利用随机森林算法(RF)进行路面附着系数估计时,存在模型构建过程中特征选择不够优化以及决策树集成的多样性不足等问题。为此,提出一种基于粒子群优化算法(PSO)对RF进行改进的方法,并给出算法流程。建立路面附着系数估计RF模型,使用PSO算法用于优化RF的参数配置,包括每棵树的特征数量、树的数量等关键因素,以增强模型的多样性和泛化能力。最后,在MATLAB/Simulink平台上搭建了联合仿真模型进行试验,对比试验结果表明:基于PSO-RF的随机森林路面附着系数估计方法能够克服传统RF方法中存在的局限性,其估计精度和稳定性均得到显著提升。 相似文献
8.
9.
10.
11.
为了准确获取分布式驱动电动汽车状态参数信息,满足车辆稳定性控制系统的需求,提出一种基于蚁狮算法的无迹卡尔曼滤波状态参数估计器。针对无迹卡尔曼滤波(UKF)过程中噪声协方差矩阵的不确定性,采用蚁狮优化算法(ALO)对其进行寻优,并引入奇异值分解(SVD)的方法来维持噪声协方差矩阵的正定性,此外,基于指数加权最小二乘法对车辆侧偏刚度进行辨识并将其作为状态参数估计器输入。基于MATLAB/Simulink和CarSim联合仿真平台,建立分布式驱动电动汽车参数估计模型,分别进行双移线工况和正弦迟滞工况仿真,并基于A&D5435快速原型开发平台进行双移线工况实车试验。仿真与试验结果表明:相比于SVDUKF算法估计结果,双移线仿真工况下,基于ALO-SVDUKF算法估计得到的质心侧偏角和横摆角速度的均方根误差分别降低了55.7%、30.7%,正弦迟滞仿真工况下,均方根误差分别降低了58.1%、85.1%,且在车辆处于极限失稳状态时仍能维持较好的估计效果;双移线试验工况下,横摆角速度的估计值与实际测量值之间的均方根误差仅为0.938 4(°)·s-1;提出的基于ALO-SVDUKF算法的分布式驱动电动汽车状态参数估计器能够有效提高质心侧偏角和横摆角速度的估计精度,可为车辆稳定性控制提供精确的状态信息。 相似文献
12.
Z.-G. Zhao L.-J. Zhou J.-T. Zhang Q. Zhu 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2017,55(5):750-773
Considering the controllability and observability of the braking torques of the hub motor, Integrated Starter Generator (ISG), and hydraulic brake for four-wheel drive (4WD) hybrid electric cars, a distributed and self-adaptive vehicle speed estimation algorithm for different braking situations has been proposed by fully utilising the Electronic Stability Program (ESP) sensor signals and multiple powersource signals. Firstly, the simulation platform of a 4WD hybrid electric car was established, which integrates an electronic-hydraulic composited braking system model and its control strategy, a nonlinear seven degrees-of-freedom vehicle dynamics model, and the Burckhardt tyre model. Secondly, combining the braking torque signals with the ESP signals, self-adaptive unscented Kalman sub-filter and main-filter adaptable to the observation noise were, respectively, designed. Thirdly, the fusion rules for the sub-filters and master filter were proposed herein, and the estimation results were compared with the simulated value of a real vehicle speed. Finally, based on the hardware in-the-loop platform and by picking up the regenerative motor torque signals and wheel cylinder pressure signals, the proposed speed estimation algorithm was tested under the case of moderate braking on the highly adhesive road, and the case of Antilock Braking System (ABS) action on the slippery road, as well as the case of ABS action on the icy road. Test results show that the presented vehicle speed estimation algorithm has not only a high precision but also a strong adaptability in the composite braking case. 相似文献
13.
Graeme Morrison 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2016,54(11):1601-1628
Various active safety systems proposed for articulated heavy goods vehicles (HGVs) require an accurate estimate of vehicle sideslip angle. However in contrast to passenger cars, there has been minimal published research on sideslip estimation for articulated HGVs. State-of-the-art observers, which rely on linear vehicle models, perform poorly when manoeuvring near the limits of tyre adhesion. This paper investigates three nonlinear Kalman filters (KFs) for estimating the tractor sideslip angle of a tractor–semitrailer. These are compared to the current state-of-the-art, through computer simulations and vehicle test data. An unscented KF using a 5 degrees-of-freedom single-track vehicle model with linear adaptive tyres is found to substantially outperform the state-of-the-art linear KF across a range of test manoeuvres on different surfaces, both at constant speed and during emergency braking. Robustness of the observer to parameter uncertainty is also demonstrated. 相似文献
14.
利用探测车数据进行路段行程时间估计面临着两类误差:采样误差和非采样误差,从而导致估计结果精度不高和可靠性差。在回顾已有估计方法的基础上,有针对性地引入了自适应式卡尔曼滤波,建立了相应的状态方程和观测方程,利用相似时间特征的历史数据标定了状态转移系数,并对滤波进行了求解。以实际数据对估计方法进行了验证,平均相对误差为13.13%。研究表明,自适应式卡尔曼滤波能够应用到基于探测车数据的路段行程时间估计中来,并具有估计精度高、收敛速度快、参数少、对初值不敏感等优点。 相似文献
15.
16.
17.
18.
为了解决交通路段不连续监控区域车辆目标的自动识别跟踪问题,提出了一种不连续空间车辆识别跟踪算法.该算法分为识别阶段和跟踪阶段,识别阶段利用高斯概率密度估计的方法建立前一场景中某个车辆目标的概率函数,再通过概率函数计算出出现在下一场景中的所有车辆的匹配概率,用概率阈值确定是否有车辆与前一场景的车辆目标匹配,匹配的车辆在下一场景中将被标记识别.而在跟踪阶段中车辆的跟踪基于无迹卡尔曼滤波(UKF),通过状态预测同时跟踪不同的车辆目标.该算法可以解决在不同路段的监控视频中自动识别并跟踪肇事潜逃车辆等实际问题.通过试验测试表明,该算法在车辆目标的识别上具有一定的精准性,且能够实现对车辆目标的实时跟踪. 相似文献
19.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(8):1047-1065
Vehicle stability and active safety control depend heavily on tyre forces available on each wheel of a vehicle. Since tyre forces are strongly affected by the tyre–road friction coefficient, it is crucial to optimise the use of the adhesion limits of the tyres. This study presents a hybrid method to identify the road friction limitation; it contributes significantly to active vehicle safety. A hybrid estimator is developed based on the three degrees-of-freedom vehicle model, which considers longitudinal, lateral and yaw motions. The proposed hybrid estimator includes two sub-estimators: one is the vehicle state information estimator using the unscented Kalman filter and another is the integrated road friction estimator. By connecting two sub-estimators simultaneously, the proposed algorithm can effectively estimate the road friction coefficient. The performance of the proposed estimation algorithm is validated in CarSim/Matlab co-simulation environment under three different road conditions (high-μ, low-μ and mixed-μ). Simulation results show that the proposed estimator can assess vehicle states and road friction coefficient with good accuracy. 相似文献
20.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(9):1497-1520
Vehicle dynamics control (VDC) systems require information about system variables, which cannot be directly measured, e.g. the wheel slip or the vehicle side-slip angle. This paper presents a new concept for the vehicle state estimation under the assumption that the vehicle is equipped with the standard VDC sensors. It is proposed to utilise an unscented Kalman filter for estimation purposes, since it is based on a numerically efficient nonlinear stochastic estimation technique. A planar two-track model is combined with the empiric Magic Formula in order to describe the vehicle and tyre behaviour. Moreover, an advanced vertical tyre load calculation method is developed that additionally considers the vertical tyre stiffness and increases the estimation accuracy. Experimental tests show good accuracy and robustness of the designed vehicle state estimation concept. 相似文献