首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
在青藏铁路五道梁低温冻土区进行了片石护道路基新结构和土护道路基结构的实体工程试验,以确定路基修筑对温度场的影响.对测试断面冻融循环的地温监测资料的分析表明,2004年片石路基左右路肩孔冻土上限处,年平均地温分别低于土护道路基相应位置0.12℃和0.14℃.2005年片石路基左右路肩孔分别低于土护道路基相应位置O.65℃和0.03℃,冻土上限以下地温均呈逐年下降趋势.片石护道和土护道路基冻土上限均存在不对称性,但随着时间发展,片石护道路基最大融化深度位置基本接近或超过天然地面,且冷生过程还在继续.该区域的片石护道路基新结构能够有效发挥降低地温、主动保护多年冻土的作用.  相似文献   

2.
为了研究修筑公路对高海拔多年冻土层热状态的影响,开展了新藏公路多年冻土区路段沿线病害调查,在海拔5 400 m地带修筑了冻土地温监测断面与气象监测站点;对气温、地温、辐射强度进行了监测,依据监测结果计算了冻土上限处的热流通量,分析了多年冻土层地温变化特征;基于热传导和热扩散理论,建立了天然地基及普通路基下部多年冻土地温-深度理论预测模型。研究结果表明:多年冻土区公路病害主要由于沥青路面大量吸热导致,热棒、隔热层等主动、被动保护的手段虽有一定效果,但不能改变多年冻土的快速退化;研究区域天然地基与路基中心一天内温差最高达19.66℃,左、右路肩一天内温差最高为4.94℃,天然地基下深层多年冻土温度稳定在-6.0℃左右,路基中心下部深层多年冻土温度稳定在-5.6℃左右,路基下部相较天然地基温度变化更为剧烈,且等温层温度更高;研究区域的辐射强度在一天的10:00~18:00显著增强,在一年的3~6月为辐射强度的顶峰期,浅层地温主要受辐射强度的年周期变化影响;天然地基、路基中心、阴坡路肩与阳坡路肩下部多年冻土层年热流通量依次为-4 001、-14 649、-4 487与58 303 kJ·m  相似文献   

3.
为进一步研究高寒冻土区路基变形破坏演化过程,以漠北公路K6+200断面处的高温高含冰量冻土区路基和K8+200断面处的低温高含冰量冻土区路基为研究对象,在路基不同部位和路基下不同深度处土体埋设温度传感器和变形传感器,研究了高纬度、高寒冻土区不同冻土条件下路基实测温度和变形演化过程及其特征。研究结果表明:在高温高含冰量冻土区,在公路建成2年后,路基下出现了明显的融化盘偏移现象,新建宽幅路基呈现出明显的横向不均匀变形特性,路基下形成了2个融化盘,其中一个明显向路基坡脚处偏移,左坡脚和路中冻土上限明显下降了3~4m,路基下原天然地表处沉降达4~9cm,而路肩处冻土上限基本保持稳定;在低温高含冰量冻土区,在保证一定路基高度的条件下,除了建成初期路基土体存在一定的变形(工后沉陷)外,由路基下多年冻土不均匀融化导致的变形很小,因此,在低温冻土区公路路基稳定性相对较好。可见,研究结论进一步阐释了高温冻土区路基、路面变形严重的成因,为高纬度、高寒冻土区路面结构抗融沉破坏设计和病害防治提供了参考,揭示了高温多年冻土区路基纵裂、沉陷等不均匀变形破坏的特征和成因,相比高温多年冻土区,在保证一定路基高度下低温多年冻土区路基具有相对良好的稳定性,这一结论对于高纬度、高寒冻土区不同冻土条件下冻土路基的设计及病害防治具有重要意义。  相似文献   

4.
青藏公路热棒路基降温效能   总被引:1,自引:0,他引:1  
为了分析多年冻土区热棒路基的工程效果,定量评价其降温效能,基于青藏公路热棒路基试验工程近11年的现场监测数据,分析了热棒路基的地温特征、温度场形态和冻融过程,估算了阴阳坡影响下热棒附近的水平热收支状况。建立了空气-热棒-冻土地基三维非稳态耦合计算模型,分析了不同结构形式(单侧直插式、单侧斜插式、双侧直插式与双侧斜插式)的热棒路基的降温效能。实测结果表明:在热棒作用下,阳坡侧路基地温可降到-1.5℃附近,较普通路基地温降低约3.0℃,阴坡侧路基地温最低达到-2.1℃;热棒路基经过11年的营运,阳坡侧冻土上限抬升约0.95m,基本达到天然地基水平;阴阳坡两侧热棒的年平均实际功率分别约为69.80、54.07 W,且热棒路基在最初5年传递能量较大,第6年后逐渐减小,此后路基的热状况进入相对稳定的状态。计算结果表明:双侧直插式热棒路基与双侧斜插式热棒路基第20年冻土上限分别为2.88、1.88m,而单侧直插式热棒路基与单侧斜插式热棒路基第20年冻土上限分别为3.84、3.46m,因此,双侧热棒路基的长期降温效果明显强于单侧热棒路基,斜插式热棒路基强于直插式热棒路基;单根热棒的年平均功率为47~56 W,与试验工程监测结果较为吻合。  相似文献   

5.
多年冻土地区路基施工前应该详细调查沿线冻土分布、类型、冻土上下限、冰层上限、地面水及有无其他热融(湖)塘、冰丘、冰椎等不良地质路基地段情况。由于各永冻区的自然条件和土壤冻结条件差别显著,所以很难有统一的路基施工方案,施工方法应根据设计对土基冻融状态的要求而选定。  相似文献   

6.
不同冻土条件和路基结构将影响冻土区路基裂缝的发生和发展过程.文章分析了多年冻土区路基裂缝产生的原因,从宏观和微观的角度分析了加筋土抑制冻土裂缝的机理.以青藏铁路清水河加筋土路基试验段为工程实例,调查了该区域路基裂缝的形态,并对比分析了不同加筋方式的处理效果.结果表明,在清水河高温不稳定冻土区内,当加筋路堤中竖向加筋间距为0.6m时抑制多年冻土的裂缝效果最为有效.  相似文献   

7.
多年冻土区隧道施工过程中围岩温度场研究   总被引:1,自引:0,他引:1  
随着青藏铁路建设工作的开展.寒区冻土工程日益受到重视。本文结合青藏铁路沿线多年冻土的主要特点,利用Ansys5.7大型有限元计算程序,对多年冻土区昆仑山隧道施工过程中地温场进行了模拟计算,分析了高原冻土隧道施工过程中围岩温度场的变化规律,并据此对多年冻土区隧道施工过程中的有关问题进行讨论.所得成果可供相应工程借鉴。  相似文献   

8.
黑龙江省小兴安岭地区是我国高纬度多年退化性冻土主要分布地区之一。小兴安岭多年退化性冻土属高温多年冻土不稳定冻土地质类型,多年冻土的热融沉对路基的影响,一是稳定性问题,二是变形问题,这是工程地质中的技术难题。本文主要探讨分析小兴安岭地区多年退化性冻土的分布和特征等问题,以及多年退化性冻土试验段的试验情况,试图加深探讨对多年退化性冻土的认识,研究探索处理多年退化性冻土的技术,这将对保证工程质量和降低工程造价具有重要的意义。  相似文献   

9.
基于相空间重构的冻土路基变形预测   总被引:8,自引:4,他引:4  
应用最大Lyapunov指数预测多年冻土路基变形,分析冻土路基变形的相空间重构方法和不同延迟时间及嵌入维数对最大Lyapunov指数的影响。发现当延迟时间为1,嵌入维数为5时,最大Lyapunov指数趋于稳定,其值为0.00528。运用该指数,进行冻土路基变形预测,比较预测变形量和实测变形量,得到最大相对误差为0.749%,最小为0.135%。结果表明最大Lyapunov指数能够较好地反映冻土路基变形的混沌特征,利用其进行冻土路基变形预测是可行的。  相似文献   

10.
我国多年冻土分布面积约占全国面积的21.5%,约占世界多年冻土分布面积的10%,随着我国经济的快速发展及西部开发、东北振兴战略的推进,不可避免的会在多年冻土地区等复杂地形地貌区域修建高等级公路。多年冻土地区由于受到复杂的气候、工程地质和水位地质条件的综合影响,修建于冻土区的高速公路路基病害频发,使道路的使用寿命缩短,影响行车安全。国内外的专家学者对多年冻土开展了研究,铁道部第三勘察设计院于1964年组建了冻土队,与多家单位联合研究,在我国东北小兴安岭多年冻土区域开展了大量的现场  相似文献   

11.
通过对多年冻土地区冻胀融沉的影响因素进行分析,得出温度、水分、土质是决定冻胀融沉程度的重要因素。从降低冻土上限、减弱地下水的水分迁移出发,找到热棒路基、换填路基、XPS板路基、通风管路基、片碎石路基5种解决方法,从原理、适用范围、注意事项3个方面对处理措施进行阐述,为因地制宜,选择合理的冻土处理措施提供依据。  相似文献   

12.
在多年冻土地区,尤其是高含冰量的多年冻土区,阴阳坡的出现给路基的稳定性带来了极大的危害.路基两侧往往出现了大量的纵长宽大裂缝,部分裂缝甚至贯穿路基.本文通过对路基现场温度进行监测分析,得出路基纵向裂纹形成的原因是路基下的冻土融沉引起路基应力场重新分布;借助断裂力学定性的分析了裂纹在路基内部的扩展趋势,定性分析的结果与现场的路基剖面图是一致的,最后就裂纹今后的扩展的趋势和有可能的危害进行初步预测.  相似文献   

13.
在我国北方的大小兴安岭及青藏高原地区,因地质条件限制和气候变化的影响,广泛分布着多年冻土地带。因此,在进行公路路基施工的时候,往往会遇到多年冻土地带与非冻土地带衔接,有不均匀沉降的现象产生。将就如何利用土工格栅减小冻土段与非冻土段衔接处不均匀沉降进行探讨和论述。  相似文献   

14.
温度差异是高原冻土地区公路路基发生翻浆的一个重要因子。通过建立的冻土路基温度场的控制方程,建立计算物理模型和数值模拟计算模型,首先模拟气候因素变化过程,得到不同时期冻土路基温度场分布,温度场随季节的变化反映了路基冻结锋面的迁移,从而分析了关键点的温度差异。提出了将换填部分冻结土与阻断水分迁移路径的抗浆结构相结合的综合防治技术设想,这对进一步研究路基翻浆的治理技术有重要的理论意义.  相似文献   

15.
翻浆路基中温度传导机理初步研究   总被引:2,自引:0,他引:2  
温度差异是高原冻土地区公路路基发生翻浆的一个重要因子,笔者建立了冻土路基温度传导物理模型,并应用熵的增量论证了路基温度传热方向;运用能量定理,得到了温度场的二维及三维非稳态热量传递数学微分方程。这对翻浆路基的进一步研究有重要的理论意义。  相似文献   

16.
据统计全球多年冻土分布面积3500×105km^2,占陆地面积的25%,季节冻土区约占陆地面积的70%。中国的多年冻土分布面积约2115×105km^2,占国土面积的22.3%,位居世界第三;季节性冻土约占国土面积的53.5%。  相似文献   

17.
多年冻土地区修筑路基是一世界性难题,热棒路基是保护冻土的一种尝试。在调查已建热棒路基及试验路段并掌握热棒工作原理的基础上,分析了热棒路基的设计原则和依据,并提出了多年冻土地区热棒路基的设计方法。  相似文献   

18.
高原冻土一直是高原地区路基施工中的重大难题,冻土这种地质构造对路基的施工所造成的影响是极大的,在很大程度上限制了公路路基的施工。因此,有必要对多年冻土所造成的路基病害进行分析,并在此基础上探讨加强冻土地区路基施工质量控制的有效措施。  相似文献   

19.
青藏高原机场跑道多年冻土地基温度场特征   总被引:1,自引:0,他引:1       下载免费PDF全文
对比了青藏高原多年冻土地区机场跑道地基温度场与公路路基温度场, 分析了其地基温度分布、温度沿深度的变化以及地基最大融化深度, 研究了宽幅沥青混凝土道面机场跑道地基温度场特征, 对比了不同道面宽度条件下其地基温度分布、不同时间地基温度沿深度的变化以及跑道中部及道肩的最大融化深度, 并基于道面宽度、时间建立了沥青混凝土道面机场跑道道中地基融化深度的表达式。研究结果表明: 多年冻土地区机场跑道地基温度场与公路路基温度场存在明显差异, 机场跑道地基融土核位置更低, 且全部位于天然地面以下, 而公路路基融土核位置相对较高, 可以通过抬高路堤使融土核全部位于路堤内, 便于通风管等温控措施的施工, 可见由于机场跑道无路堤、道面幅度宽等特点, 使得多年冻土地区公路与铁路建设的现有研究成果不能完全应用于机场跑道建设中; 对于沥青混凝土道面的机场跑道多年冻土地基, 随着道面宽度的增加, 跑道地基稳定性降低, 道面宽度每增加1%, 地基0℃等温线约下降0.17%, 地基融土核最高温约上升0.46%, 道中地基融化深度约加深0.19%, 但当道面宽度超过35 m时, 道中地基融化深度趋于平稳; 相对于道中地基温度场, 道肩受道面宽度的影响较小, 当道面宽度超过25 m时, 其地基融化深度趋于平稳; 道中地基融化深度表达式相关系数为0.988 6, 相对误差在1%以内。   相似文献   

20.
基于附面层理论,引入焓值建立伴有相变的二维非稳态温度场数值模型,分别对水泥混凝土和沥青两种路面下路基温度场的变化规律进行分析。研究结果表明,水泥混凝土路面下路基温度场明显低于沥青路面,不同深度处路基的温度场变化存在一定的滞后性,随深度的增加路基内温度场比路基基底以下的温度场变化幅度大;路表温度明显低于路基的内部温度,并在路基内部形成融土核;水泥混凝土路面融化深度小于沥青路面,融化速率趋于平稳,因此,在多年冻土区采用水泥混凝土路面比较有利。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号