首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 546 毫秒
1.
高速铁路声屏障降噪效果及其影响因素分析   总被引:1,自引:0,他引:1  
根据我国高速铁路(客运专线)声屏障降噪效果实测结果及高速铁路列车运行噪声特性,就声源构成、频率特性、桥面系及防护墙对声屏障降噪效果的影响进行分析。结果表明,随着速度提高,声屏障总体降噪效果呈下降趋势;铁路声屏障对500Hz以上的中高频噪声具有较好的降噪效果,但对250Hz以下的中低频噪声效果不大;桥面系及防护墙可起到一定的声屏障降噪作用。因此,在铁路声屏障设计中应根据高速铁路声源特性进行声学设计计算;在环境影响评价中,也应采用合理的声屏障降噪效果并考虑桥面系及防护墙的屏障作用;同时,应加强提高声屏障构件的低频隔声性能和吸声性能。  相似文献   

2.
直立式声屏障是我国高速铁路噪声控制主要措施,仅在声影区有较好的降噪效果,全封闭声屏障、半封闭声屏障等进一步降低噪声的声屏障类型虽已在城市轨道交通广泛应用,但在铁路应用案例极少,为了保护"小鸟天堂"生态环境,我国深茂铁路于国内首次采用全封闭声屏障,为了分析其降噪效果,采用间接法进行现场测量,结果表明:动车组运行速度不高于132 km/h时,全封闭声屏障可大幅降低列车通过噪声,且不存在声亮区,距线路不同距离、不同高度处,全封闭声屏障降噪效果可达16~18 dB;呈现宽频降噪性能,对于400 Hz以上的噪声,降噪量高达10 dB以上;630 Hz以上降噪效果高达15 dB以上。试验明确了全封闭声屏障降噪特性,为我国高速铁路声屏障选型和优化设计提供参考。  相似文献   

3.
高速铁路引入城区时,不可避免地对沿线的声环境敏感点尤其是高层住宅造成影响。为掌握高速铁路对高层住宅的噪声影响特点,指导工程设计采取可行的降噪措施,基于Cadna/A软件,建立西延高铁与某处声环境敏感点的噪声影响预测模型,以距离铁路20 m处的高层住宅为重点研究对象,预测西延高铁运营对该高层住宅的噪声影响,分别模拟3,10 m高直立式声屏障和半封闭声屏障的降噪效果。结果表明:在一定工况条件下,路基轨面以上5.5 m处,铁路噪声影响达到最大;3 m高直立式声屏障对敏感点地面至轨面以上2.5 m降噪效果明显,10 m高声屏障对高于轨面29.5 m的楼层降噪效果有限,半封闭声屏障对各层降噪效果明显,采取半封闭声屏障可确保该高层住宅噪声影响达标。  相似文献   

4.
为缓解既有铁路可能对沿线拟建居民小区产生的噪声影响,该文提出了绿化带降噪、声屏障+绿化带降噪和商铺房屋+声屏障降噪三种方案,从噪声治理措施的位置、形式、效果及投资进行多方案分析比较,得出环境效益和经济效益最佳的方案,可减少铁路的噪声影响,提高拟建居住小区的居住品质.  相似文献   

5.
声屏障工程是防治铁路噪声影响的有效措施,声学设计是保证声屏障工程降噪效果的重要手段和方法。通过郑铁一中声屏障工程学设计研究,给出了声学设计中应考虑的主要内容及解决方法。声屏障建成后,各主要评价点的实际降噪效果与理论计算值相差不超过1dB;主要评价点的24h等效连续A声级平均降噪量为10.4dB,超过预定目标值2.4dB,降噪效果非常显著。  相似文献   

6.
测试列车通过一重载铁路路基区段时声屏障的插入损失值,分析不同牵引质量(5 000,8 000,12 000 t)和不同试验列车速度(60~100 km/h)3种声屏障的降噪效果和插入损失的频域特性。对首次在重载铁路中应用顶端降噪技术的干涉型声屏障的降噪效果进行了测试与分析。结果表明:声屏障的插入损失随列车速度的增加总体上呈减小的趋势;高声屏障高度由3.0 m增加至4.5 m,插入损失增加4.0 d B(A)以上;声屏障加装顶端降噪器,插入损失增加2.0 d B(A)以上;声屏障顶端降噪器对中低频噪声降噪效果显著,可有效提高声屏障工程总体降噪效果。  相似文献   

7.
干涉型声屏障结构的研究   总被引:1,自引:1,他引:0  
干涉型声屏障基于声波干涉消声原理并依据铁路噪声源特点设计制造而成。声学模型试验测试结果表明,干涉装置的降噪作用主要体现在位于声影区和亮区之间的过渡区域(亦称灰色区域),干涉装置附加降噪效果为3.0~5.6dB,与同高度的直立形声屏障相比,降噪效果提高2.0~3.2dB。与其它顶部吸声体相比,干涉型声屏障更适宜于控制铁路噪声。因此,在铁路噪声控制工程中具有良好的应用前景。  相似文献   

8.
结合声屏障顶端降噪器在铁路声屏障工程中的应用,对顶端降噪器的附加降噪效果及其适用范围进行了测试分析研究。根据现场实测结果,A型声屏障顶端降噪器在距离铁路外轨中心线15 m、距地面不同高度(距地面3-9m高)取得了1.3~2.4 dB(A)的附加降噪效果;C型顶端降噪器在距离铁路外轨中心线12.5 m和25m、距地面不同高度处,取得了2.3~2.9 dB(A)的附加降噪效果。顶端降噪器可作为直立式声屏障的重要补强措施,以提高声屏障的总体降噪效果;对有限高要求,直立式声屏障又不能满足降噪效果要求时,可采用顶端降噪器提高声屏障的降噪效果。  相似文献   

9.
市域铁路噪声影响突出,需要采取有效的噪声防治措施,声屏障作为主动控制措施,一直被广泛采用。基于市域铁路的特点和运行速度,结合市域铁路成灌线测试数据的分析,从声源特性、声屏障设置原则及声学设计、结构形式等方面对市域铁路声屏障设置开展研究。指出:(1)市域铁路声源主要为轮轨噪声,噪声频谱呈宽频特性,桥梁、路堤区段在低频段和中高频段声能量均较为集中,桥梁二次结构噪声影响不能忽视,声屏障的设置应与桥梁结构减振降噪协同开展。(2)市域铁路声屏障声学设计时,评价时间内不能简单地将铁路噪声源视为无限长线声源,建议直立式声屏障附加长度取值为50~70m。(3)市域铁路列车脉动风压对声屏障结构选型影响较小,应加快对直立式声屏障顶部变化型、顶端降噪器的研制。  相似文献   

10.
郑州铁一中教学楼声屏障工程声学性能效果评价   总被引:1,自引:1,他引:0  
为了治理郑铁一中教学楼的铁路噪声污染,实施了声屏障工程。工程的声学性能表明:声屏障工程有效地控制了铁路噪声对教学楼的影响,大大改善了学校的教学环境质量。教学楼的平均噪声级降低了8.8dB(A),最高噪声敏感点的降噪量达到14.2dB(A);声屏障单位面积工程投资1269元/m^2;人均降噪投资为113.48元/dB(A)。研究结果为我国铁路声屏障建设提供了科学的参考数据和方法依据。  相似文献   

11.
高速铁路声屏障结构气动力测试方法初探   总被引:2,自引:0,他引:2  
随着我国列车速度的不断提高,声屏障结构安全问题日益得到重视。为寻求声屏障的最佳设计方案,保障行车安全,本文在研究国外高速铁路声屏障气动力的测试方法和评价方式基础上,结合京滓城际铁路声屏障的结构形式,确定我国高速铁路声屏障结构气动力的试验方法。  相似文献   

12.
高速铁路声屏障是减少运营噪声的有效措施,但声屏障的设置会产生“廊道效应”,对乘客产生视觉和心理上的负面影响。本文将高速列车乘客在旅途中的视觉信息作为分析目标,将声屏障的景观特性细化为空间特性和视觉特性,并系统阐述空间特性和视觉特性的具体评判和量化方法。借助数字摄影和图像处理技术,对已建高速铁路不同声屏障的景观指标数据进行计算,并以此构建高速铁路声屏障景观层次灰色分析模型,实现对不同声屏障景观特性的量化评判。在此基础上,给出高速铁路声屏障景观选型的方法和建议。  相似文献   

13.
轨道交通噪声问题日益引起了人们的关注,对轨道线路两侧的声环境预测工作也提出了新的要求.通过对我国《环境影响评价技术导则-城市轨道交通》中的声环境影响预测公式进行分析,从计算公式的参考点噪声辐射源强、声屏障衰减模型和声屏障等效频率计算等三个方面对其进行修正,以期能使我国的城市轨道交通噪声预测模式更加完善,计算更加精确.  相似文献   

14.
随着环境友好型铁路建设的发展要求,声屏障作为有效的降噪手段得到广泛的应用,脉动力是声屏障动力设计中必须控制的因素。基于ALE方法构建高速列车、声屏障、空气三维数值模型,对列车经过声屏障时产生的脉动力过程进行仿真。分析声屏障脉动力分布特性及脉动力时程变化特性,分析列车运行速度、声屏障高度、与股道中心线距离等因素对脉动力的影响规律,数值模型求解采用并行计算技术,分析并行区域分解方案对并行效率及加速比的影响。本文研究结果为高速铁路声屏障结构设计提供参考依据。  相似文献   

15.
目前铁路噪声环境影响评价的背景噪声修正方法存有争议,对铁路噪声的评价方法、评价结果和防治措施的确定有很大影响。本文根据铁路噪声的环境影响特点,认为铁路边界噪声排放评价和铁路噪声常规环境影响评价,适用背景噪声的减除修正;综合声环境质量预测评价,对铁路噪声适用背景噪声的叠加修正;特殊情况铁路噪声环境影响评价可进行背景噪声的叠加修正,但修正时只应考虑铁路噪声作用时段。  相似文献   

16.
轮轨噪声是城市轨道交通中的主要噪声源,因此,低噪声车轮的研究是降低轨道交通噪声研究的重点。文章对包括弹性车轮、消声车轮、声学优化车轮和复合材料车轮研究和应用的最新进展进行了总结。  相似文献   

17.
城际铁路单侧高层建筑物声屏障形式设计研究   总被引:3,自引:3,他引:0  
选择合理的声屏障形式与高度,可有效降低噪声污染、减少搬迁量。设置声屏障,是控制声传播途径的最有效办法。以某城际铁路穿越城市建成区,为保护单侧高层声环境敏感建筑为例,通过对直立式声屏障、全封闭声屏障和半封闭声屏障的比选,确定声屏障形式选用半封闭式。在满足接触网、桥梁等专业要求的基础上,通过声学计算、结构检算,确定半封闭式声屏障总高度为8m,跨度11.3m。对于列车设计时速250km及以下时速的城际铁路,设置半封闭式声屏障,单侧降噪效果在8.7~11.2dB,可满足铁路边界噪声限制要求。  相似文献   

18.
通过分析铁路噪声频谱特点,结合国家对环境噪声的要求和铁道行业对铁路声屏障的设计要求,对降噪环保产品铁路声屏障的降噪声学性能、机械强度力学性能、抗疲劳性能、防腐性能与防火性能进行了研究并提出相应要求,为铁路声屏障标准制修订和产品设计、制造、检验提供参考依据。  相似文献   

19.
高速铁路桥梁声屏障插入损失五声源预测模式研究   总被引:4,自引:1,他引:3  
研究一种高速铁路桥梁声屏障插入损失的五声源预测模式,可应用于时速300 km以上高速铁路声屏障声学设计。对高速铁路噪声源进行现场辨识测试,分析其声源特性,将高速铁路噪声源简化为轮轨区、车体下部、车体上部、集电系统、桥梁结构5个等效噪声源。根据单声源模式的声屏障插入损失预测公式,结合不同车速下声源等效频率和噪声贡献量,同时考虑桥梁翼板对声传播的影响,形成五声源模式的声屏障插入损失预测公式。采用该方法计算2.15 m声屏障插入损失并与现场测试数据对比,结果显示距离线路25~50 m处受声点插入损失预测结果与实测结果吻合度最高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号