首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
杜少文 《公路》2012,(7):250-253
采用水泥和乳化沥青再生水泥稳定碎石回收材料,通过马歇尔击实法确定了再生混合料的最佳外加水量和最佳乳化沥青用量,测试了不同水泥用量下再生混合料高温养生后的劈裂强度、浸水劈裂强度比、冻融劈裂强度比,以及混合料不同龄期的劈裂强度和抗压强度.试验结果表明,水泥和沥青同时影响再生混合料的强度,随着水泥用量增大,再生混合料的最终劈裂强度增加,水稳定性增强,7d劈裂强度和抗压强度增长速度加快.再生混合料中的最优水泥用量需要综合考虑乳化沥青再生混合料设计标准和无机胶凝材料再生混合料设计标准来确定,本文推荐最佳水泥用量取2.5%左右.  相似文献   

2.
沥青路面冷再生技术将废旧沥青混合料作为原材料,加入乳化沥青、水泥及外加剂,拌合成新的混合料用于铺筑路面,可节约材料、降低造价、节能环保。现采用不同乳化剂类型的乳化沥青作为结合料,在不同乳化沥青用量和水泥用量条件下,进行冷再生沥青混合料物理参数及高、低温性能的试验研究,分析乳化剂类型、乳化沥青用量和水泥用量对混合料高、低温性能的影响。通过试验研究,得到了满足混合料性能规范要求的最佳乳化沥青用量和水泥用量。研究结果对冷再生沥青混合料的工程应用提供理论依据。  相似文献   

3.
为了探讨再生沥青混合料的使用性能,对25%、55%和85%的3种不同RAP掺量的热拌再生沥青混合料进行了实验室试验.试验结果与分析表明:再生沥青混合料的最佳沥青用量随着RAP掺量的增加略有减少,在4.79%到4.50%之间.再生沥青混合料的高温稳定性、水稳定性、低温性能、渗水性能等技术指标均满足现行规范对新沥青混合料的要求.随着RAP掺量的增加,再生沥青混合料的高温稳定性、水稳定性有不同程度的增强,但低温性能、渗水性能有不同程度的减弱.  相似文献   

4.
针对炎热地区旧路改扩建工程中泡沫沥青冷再生材料组成、配合比设计及路用性能等问题,开展泡沫沥青冷再生混合料研究。通过对组成材料特性探究,提出了泡沫沥青再生混合料合理配合比。系统地进行了浸水劈裂试验、无侧限抗压强度试验和车辙试验,分析泡沫沥青冷再生混合料路用性能。研究结果表明旧路铣刨料细料需控制在10%~15%左右,泡沫沥青冷再生混合料水泥用量控制在2%左右时其综合性能最佳。  相似文献   

5.
在保证RAP再生沥青混合料路用性能的同时,如何合理利用废旧沥青混合料,对推进废物再生利用具有重大的意义。文章通过对石安高速上面层刨铣料进行抽提筛分试验,评价RAP材料的相关性能;确定了RAP掺量为20%、30%、40%时再生混合料最佳沥青用量,然后开展浸水马歇尔试验、车辙试验、小梁低温弯曲试验、冻融劈裂试验及再生沥青混合料疲劳试验;同时系统地分析了不同RAP掺量对热再生沥青混合料的疲劳性能、高温稳定性、水稳定性以及低温抗裂性的影响规律。研究表明:回收旧沥青的黏度值、延度及软化点均呈现下降趋势;不同的掺配满足各体积指标要求4.75mm的通过率和最佳沥青用量。  相似文献   

6.
由于回收沥青路面材料(RAP)和回收沥青油毡瓦(RAS)等具有环保、节能、省税等优点,现已广泛应用于沥青路面工程中,并且发展规模日益壮大。然而这些回收材料已经高度老化,应用在实际工程中将会对沥青混合料的耐久性带来潜在的危害。再生剂能改善高含量RAP混合料的工程性质,因此受到道路界的广泛关注。该文提出了一种掺再生剂和RAP的沥青混合料配合比设计新方法,并且已经铺筑了试验路段。研究人员首先通过一系列的室内试验逐步选定沥青用量和再生剂掺量范围,然后采用沥青混合料配合比平衡设计法确定最佳沥青用量和最佳再生剂用量。试验结果表明:再生剂的掺量是平衡再生沥青混合料抗车辙性能和抗开裂性能的关键因素。  相似文献   

7.
结合"沥青路面材料再生利用技术研究和工程示范"课题,论文开展了高旧料掺量厂拌热再生沥青混合料设计及工程应用研究,包括废旧沥青混合料的性能评价、新沥青及新集料的选择、厂拌热再生混合料组成设计及性能评价、再生混合料质量控制、试验路工程观测与评价等几方面。为保障高旧料掺量厂拌热再生沥青混合料在大中修工程中的应用质量,有关经验可供相关专业人员参考。  相似文献   

8.
采用25%的沥青铣刨旧料掺量,对AC-25C沥青混合料配合比设计进行研究,包括设计级配范围、沥青用量确定方法、性能验证指标等。该材料通过在G15高速公路大修的应用情况可以表明:在高速公路重载环境下应用高性能混合旧料再生利用技术,可实现废弃旧料的大规模高层次的再生利用。性能指标均满足设计要求,对节约工程造价,节能减排绿色利用起到了积极作用。  相似文献   

9.
0引言 目前,中国的公路改扩建及路面翻修工程每年都会产生数千万吨废旧沥青混合料.按照交通运输部印发的《关于加快推进公路路面材料循环利用工作的指导意见》要求,到"十二五"末,全国将基本实现公路路面旧料"零废弃",路面旧料回收率(含回收和就地利用)达到95%以上. 如果从尽量多用旧料(RAP料)的角度出发,可以采用就地热再生技术或者冷再生技术,但这些技术并没有充分地激活和利用RAP料,再生后的沥青混合料性能也难以满足新拌热沥青混合料的技术要求;如果从保证再生混合料性能的角度出发,可以采用厂拌热再生技术,这也是目前最成熟可靠的技术.但是由于RAP料和新骨料的加热温度均较高以及再生剂成本高,导致目前厂拌热再生的旧料掺加比例很难超过30%[1-2].  相似文献   

10.
温拌再生沥青混合料技术兼具热再生技术和温拌技术的特点,实现了节能减排与废物利用的结合。相关研究表明:在无其他性能改善措施的条件下,旧料掺量为30%以上的温拌再生沥青混合料的低温稳定性和水稳定性不能达到规范要求。因此,该文基于纤维对沥青混合料性能的改善作用,通过添加温拌剂、纤维和提高沥青用量的方法,对掺加40%、50%比率旧料的AC-13温拌再生沥青混合料进行组成设计与路用性能检验,评价纤维对高旧料掺配率温拌再生沥青混合料的性能改善效果。结果表明:该方法可以有效提高温拌再生沥青混合料的低温和水稳定性路用性能,并满足规范要求。  相似文献   

11.
研究就地热再生施工碾压温度、材料组成与再生沥青混合料性能之间的关系,是合理确定不同施工碾压温度下再生沥青混合料材料组成,保障混合料性能的重要依据。为解决就地热再生施工过程中碾压温度的动态变化引起的再生沥青混合料耐久性不足问题,引入正交试验,分别研究了碾压温度、再生剂用量、温拌剂用量与再生沥青混合料空隙率、水稳定性指标之间的关系,分析了3种因素对指标的影响程度,构建了3种因素与指标之间的二次回归模型。通过灰色关联法分析了空隙率与水稳定性的相关性,确定了就地热再生施工过程中的关键控制指标。在此基础上,提出就地热再生施工过程质量控制工艺。结果表明:碾压温度、再生剂用量分别对空隙率、冻融劈裂抗拉强度比指标的极差最大,影响程度最高;再生沥青混合料空隙率随碾压温度的增加而降低,冻融劈裂抗拉强度比则反之;相同碾压温度情况下,再生剂、温拌剂用量与空隙率指标呈负相关,而再生剂与冻融劈裂抗拉强度比呈正相关,温拌剂则反之;就地热再生施工过程中可采用空隙率指标作为现场施工关键控制指标,保障再生沥青混合料水稳定性;再生剂、温拌剂用量变化会引起再生沥青混合料空隙率的变化,可采用动态调整再生剂以及温拌剂用量的方式来解决不同碾压温度条件下的就地热再生现场质量控制以及施工均匀性控制问题。  相似文献   

12.
就地热再生技术可以将原路面废旧沥青混合料充分利用,而废旧沥青混合料中沥青老化变硬,粘度增大,性能衰退,需要掺加一定比例的再生剂改善再生沥青混合料性能。通过马歇尔试验,利用层次分析法,构建马歇尔综合指标评价模型,分析单位再生剂用量与综合马歇尔性能指标的变化规律。结果表明:(1)马歇尔综合评价模型的评价指标分别为稳定度、浸水马歇尔稳定度、冻融劈裂抗拉强度、冻融劈裂抗拉强度比,各指标的权重为0. 125、0. 375、0. 125、0. 375;(2)再生剂用量由1%增加至5%时,综合性能评分增长率分别为2. 45%、0. 30%、-0. 10%、0. 60%;(3)施工过程中再生沥青混合料最佳再生剂用量为2%。  相似文献   

13.
为了研究RAP(回收沥青路面材料)掺量对温拌再生沥青混合料性能的影响,突破以往厂拌热再生中RAP掺量较低的瓶颈,通过设计不同RAP掺量的AC-16温拌再生沥青混合料,并对再生混合料的最佳沥青用量、拌和压实温度以及路用性能进行试验,研究温拌再生混合料的性能变化规律。试验结果表明,最佳沥青用量随着RAP掺量的增加而增加,而最佳新沥青用量随着RAP掺量的增加而减少,温拌剂的温拌效果随着RAP掺量的增加而减弱,温再生混合料的路用性能在RAP掺量为40%~50%时变化加剧,最终确定温拌再生沥青混合料的RAP掺量宜控制在40%~50%。  相似文献   

14.
为解决再生沥青混合料抗裂性能不足的问题,选择纳米SiO2和SBS为改性剂,分别制备纳米Si O2改性再生沥青混合料、SBS改性再生沥青混合料、SBS/纳米SiO2复合改性再生沥青混合料和普通再生沥青混合料,对几种混合料进行试验,包括圆盘拉伸试验(DCT)、小梁试验和疲劳试验,以确定不同沥青混合料的抗裂性能。结果表明,使用改性沥青对再生沥青混合料的低温性能和抗疲劳性能有促进作用,且SBS/纳米SiO2复合改性再生沥青混合料的整体抗裂性能最优。为此,建议应用较高掺量旧沥青路面材料(RAP)时,采用SBS/纳米SiO2复合改性沥青会显著改善整体混合料的抗裂性能。  相似文献   

15.
SMC常温沥青混合料再生技术可将旧料的使用率提至60%以上,具有显著的经济环境效益,是一种新型环保型沥青路面材料。本文采用了SMC常温沥青再生剂,大幅降低了再生沥青混合料的拌和温度,并通过铺筑试验路,使RAP掺量达到60%以上,显著促进了旧料的再生利用。本文主要研究了SMC常温再生沥青混合料的配合比设计及路用性能,其高温、水稳等性能均符合规范要求。  相似文献   

16.
基于再生沥青路面,通过对沥青种类及用量、养生条件、拌和用水量、水泥用量等影响因素的分析,研究了其在干燥条件下对泡沫沥青混合料抗拉强度的影响。结果表明,在泡沫沥青用量相同时,西安-渭南高速公路(A1)再生混合料抗拉强度和残留抗拉强度比(TSR)均要比西安-宝鸡高速公路(A2)优,抗拉强度最大可提高21. 53%。沥青用量对冷再生混合料性能的影响显著。随着泡沫沥青用量的增加,A1和A2两种沥青混合料抗拉强度先增大后减小,其残留抗拉强度比也逐渐增大然后再减小。在A1和A2沥青混合料拌和用水量分别为62%~82%、72%~82%时,再生混合料具有较高的强度。泡沫沥青冷再生混合料随着养生时间的延长,其TSR逐渐减小,抗拉强度逐渐增大。在进行3 d的养生后,试件强度则趋于稳定,抗拉强度和TSR值随养生时间的延长具有不明显的变化。A1和A2沥青混合料的抗拉强度随着水泥用量的增加均具有显著增大,但TSR先增大后减小。  相似文献   

17.
冷再生沥青混合料性能评价   总被引:1,自引:0,他引:1  
从基层材料的功能要求出发,评价了乳化沥青冷再生混合料的高温性能、劈裂强度和水稳定,从而论证冷再生沥青混合料用作高速公路沥青路面基层材料的可行性。通过马歇尔稳定度试验和劈裂强度试验评价了冷再生混合料的强度性能,确定了混合料的最佳沥青用量;用车辙试验检验了再生混合料的高温稳定性;用冻融劈裂试验评价了再生混合料的水稳定性。研究发现,冷再生混合料的最佳沥青用量为(纯沥青油石比)2.5%;最佳油石比下,冷再生混合料车辙动稳定度均大于3000次/mm,冻融劈裂残余劈裂强度比为97.39%。结果表明,所设计的冷再生混合料具有较高的力学强度,优良的高温性能和水稳定性,能够用于铺筑高速公路沥青路面基层。  相似文献   

18.
借助某公路路面修复工程为例,对乳化沥青再生混合料质量检验及经济环境效益进行分析,以弥补该领域研究的不足,在介绍该公路路面修复工程概况的基础上,对该公路路面修复工程乳化沥青再生混合料的设计与施工进行阐述。在此基础上对通过铺筑试验路段现场制备试件及取芯试件对乳化沥青再生混合料的质量进行检验,并对乳化沥青再生混合料的经济环境效益进分析。研究结论表明该路面修复工程乳化沥青再生混合料完全符合国家相关规范要求,节约了碎石、标准煤消耗量,减少了碳、二氧化碳、二氧化硫、氮氧化物排放物,并节约工程造价约428万元,取得了显著的环境及经济效益。  相似文献   

19.
泡沫沥青混合料设计方法的试验研究   总被引:19,自引:2,他引:19  
在国外,泡沫沥青用于道路的再生十分普遍,而这项技术在我国应用较少。本文结合国外有关研究,提出了泡沫沥青混合料材料组成和设计原理,并通过试验研究得出泡沫沥青用于稳定一定级配路面铣刨料(RAP材料)作为路面基层的可行性。通过分析不同养护方法、不同水泥用量及泡沫沥青用量与间接抗拉强度(劈裂强度)之间存在的关系,得出了确定最佳沥青用量的控制指标。考虑到泡沫沥青混合料的力学特性对湿度有很强的依赖性,初步得出一套基于水稳性的泡沫沥青混合料配合比设计方法。  相似文献   

20.
为了循环利用路面回收材料,节省养护投资成本,依托G20青银高速靖边至王圈梁段的路面大中修工程,通过对沥青路面回收材料的检测评价、厂拌热再生沥青稳定碎石混合料的配合比设计、厂拌热再生拌合楼的改造以及铺筑试验段验证了厂拌热再生混合料的路用性能。结果表明:RAP掺量25%、改性沥青掺量2.3%的厂拌热再生混合料马歇尔残留稳定度为85.03%、冻融劈裂强度比78.9%、车辙试验动稳定度4 230次·mm~(-1),相比常规热拌沥青混合料抗车辙能力增强。再生混合料经济效益明显,可直接节约成本约15%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号