共查询到20条相似文献,搜索用时 0 毫秒
1.
Concentrations of dissolved Cd, Cd(diss), were measured weekly from June 1991 to June 1994 at a coastal station in the western Baltic Sea. The mean concentration of 204 pmol/dm3 is about 50% higher than in open Baltic Sea surface waters. A distinct seasonal cycle was observed with elevated concentrations in winter and spring (272 pmol/dm3) and lower values in summer and autumn (131 pmol/dm3). Relating the seasonal changes in Cd(diss) to the nutrient cycle revealed ΔCd(diss)/ΔNO3 and ΔCd(diss)/ΔPO4 ratios which are consistent with other measurements and seem to confirm the concept of a nutrient-like biogeochemistry of Cd. However, a time shift of two to three months exists between the depletion of nutrients in spring and the depletion of Cd(diss). Possibly, this indicates a decoupling of Cd(diss) from nutrients during the spring plankton bloom. However, no final conclusions can be drawn yet.Cd(diss) concentrations decreased significantly during the three year measurement period, whereas nitrate concentrations increased. A possible linkage between eutrophication and the Cd budget of the Baltic Sea is discussed. 相似文献
2.
Coastal areas such as estuaries, bays and fjords usually have hydrographic characteristics (e.g., temperature, salinity) which differ from those at larger spatial scales and in offshore areas. The differences can arise if the areas are subject to different climatic forcing or if they are relatively isolated from each other due to topographic and ocean circulation features which inhibit advective inputs of water mass properties. Local differences in hydrographic conditions can therefore potentially limit the applicability of existing long time series of coastally monitored temperatures for addressing questions at large spatial scales, such as the response of species distributions and phenologies to climate change. In this study we investigate the spatial synchrony of long-term sea surface temperatures in the North Sea–Baltic Sea region as measured daily at four coastal sites (Marsdiep, Netherlands; Torungen, Norway; Skagens Reef, Denmark; and Christiansø, Denmark) and in several large offshore areas. All time series, including two series reconstructed and intercalibrated for this study (Skagens Reef and Christiansø, Denmark), began during 1861–1880 and continue until at least 2001. Temperatures at coastal sites co-varied strongly with each other and with opportunistically measured offshore temperatures despite separation distances between measuring locations of 20–1200 km. This covariance is probably due to the influence of large-scale atmospheric processes on regional temperatures and is consistent with the known correlation radius of atmospheric fluctuations (ca. 1000 km). Differences (e. g, long-term trends, amplitude of seasonal variations) between coastal temperatures and those measured in adjacent offshore areas varied nonrandomly over time and were often significantly autocorrelated up to 2 years. These differences suggest that spatial variations in physical oceanographic phenomena and sampling heterogeneities associated with opportunistic sampling could affect perceptions of biological responses to temperature fluctuations. The documentation that the coastally measured temperatures co-vary with those measured opportunistically in offshore areas suggests that the coastal data, which have been measured daily using standardized methods and instruments, contain much of the variability seen at larger spatial scales. We conclude that both types of time series can facilitate assessments of how species and ecosystems have responded to past temperature changes and how they may react to future temperature changes. 相似文献
3.
4.
A sigma (σ)-coordinate ocean model by Blumberg and Mellor (POM) is applied to study the formation processes of mesoscale cyclones observed in the Eastern Gotland Basin following the dense water inflows. The initial conditions simulate a situation when the Arkona and Bornholm basins and partially the Slupsk Furrow are already filled with the inflow water of the North Sea origin, while the Eastern Gotland and Gdansk basins still contain the old water of pre-inflow stratification. Model runs with constant and time-dependent winds, changing the buoyancy forcing, grid geometry and bottom topography display the following. Entering the Eastern Gotland Basin from the Slupsk Furrow, the bottom intrusion of saline inflow water splits in two: one goes northeast towards the Gotland Deep, and second moves southeast towards the Gulf of Gdansk. An intensive mesoscale cyclonic eddy carrying the inflow water is generated just east of the Slupsk Furrow with the inflow pulse. A number of smaller cyclones with boluses of the inflow water are formed in the permanent halocline along the saline intrusion pathway to the Gotland Deep. Following Spall and Price [J. Phys. Oceanogr. 28 (1998) 1598], the cyclones are suggested to form by the adjustment of the high potential vorticity inflow water column to a low potential vorticity environment. 相似文献
5.
6.
The northernmost basin of the Baltic Sea, the Bothnian Bay, is ice-covered for about half the year. During this time, distinct under-ice river plumes develop, even seaward of the smallest rivers, that are substantially thicker and larger in extent than during the summer months. Wind mixing is negligible, and during late spring in April or May, the highest annual discharge occur while the sea is ice covered, thus providing conditions for the formation of extensive under-ice plumes. These plumes are characterised by high levels of trace elements (e.g., Al, Fe and Zn), organic matter (TOC and dissolved organic carbon [DOC]), nutrients and also optically active substances (colored dissolved organic matter, CDOM). The under-ice plumes provide an important pathway for undiluted transport of land-derived substances to the pelagic waters of the basin, affecting the salinity, chemistry and optical properties of coastal waters. Freshwater ice growth on the underside of an existing sea ice sheet also restricts the buildup of sea ice and under-ice algal communities, potentially in large areas along the coasts. Plume water influences the optical characteristics of coastal waters for a period of time after ice break-up, potentially affecting primary production in these areas. Furthermore, the formation of under-ice plumes potentially has a positive feedback on the ice season length due to freshening of the coastal waters (earlier freeze-up) and restricted oceanic heat flux (slower melting). 相似文献
7.
Validation of a hybrid optimal interpolation and Kalman filter scheme for sea surface temperature assimilation 总被引:1,自引:0,他引:1
A hybrid data assimilation scheme designed for operational assimilation of satellite sea surface temperatures (SST) into an ocean model has been developed and validated against in-situ observations. The scheme consists of an optimal interpolation (OI) part and a greatly simplified Kalman filter (KF) part.The OI is performed only in the longitudinal and latitudinal directions. A climatological field is used as a background field for the interpolation. It is constructed by fitting daily averages of satellite SST to the annual mean, annual, and semiannual harmonics in a 20 km by 20 km grid. The background error covariance is approximated by a spatially varying two-dimensional exponential covariance model. The parameters of the covariance model are fitted to the deviations of the satellite data from the background field using data from a full year.The simplified KF uses ocean model forecasts as a background field. It is based on the assumption that it is possible to neglect horizontal SST covariances in the filter and that the typical time scale for vertical mixing in the mixed layer is much shorter than the average time between observations. We therefore assume that the error variance in a column of water is evenly spread out throughout the mixed layer. The result of these simplifications is a computationally very efficient KF.A one year validation of the scheme is performed for year 2001 using an operational eddy resolving ocean model covering the North Sea and the Baltic Sea. It is found that assimilation of sea surface temperature data reduces the model root mean square error from 1.13 °C to 0.70 °C. The hybrid scheme is found to reduce the root mean square error slightly more than the simplified KF without OI to 0.66 °C. The inclusion of spatially varying satellite error variances does not improve the performance of the scheme significantly. 相似文献
8.
9.
Copepods were sampled by a multiple opening-closing net in the eastern Weddell Sea during various seasons (late winter/early spring, summer, autumn). Total copepod biomass integrated over the upper 1000 m varied seasonally between 1.7 mg C m−3 in late winter/early spring and 3.7 mg C m−3 in autumn. After the dark season the copepods were rather evenly distributed vertically and highest biomass levels were found in the mid-water layers between about 200 m and 500 m. By contrast, especially in summer but also in autumn copepod biomass concentrated in the uppermost water layer. A total of 64 calanoid species were identified in the upper 1000 m with maximum species numbers in the deepest layer. The large calanoids Calanus propinquus, Calanoides acutus, Metridia gerlachei, Euchaeta antarctica and the small calanoid Microcalanus pygmaeus prevailed and accounted for 60–70% of total copepod biomass, while the small poecilostomatoid Oncaea and the cyclopoid Oithona species comprised about 20%. Hence, the distribution pattern of the entire copepod biomass is strongly influenced by the life cycles of a few dominant species. 相似文献
10.
The brackish Baltic Sea has been seen as particularly suitable for studies of food webs. Compared to fully marine ecosystems, it has low species diversity, which means fewer trophic linkages to analyse. The Baltic Sea is also one of the best-studied areas of the world, suggesting that most data requirements for food web models should be fulfilled. Nevertheless, the influence of physical and biological factors on trophic interactions and biogeochemical patterns varies spatially in the Baltic Sea, adding considerable complexity to food web studies. Food web structure and processes can be described and compared quantitatively between areas by estimating the flow of matter or energy through the organisms. Most such models have been based on carbon, though studies of complementary flows of other elements limiting production, such as nitrogen and phosphorus would be desirable. However, since ratios between carbon and other elements are used in calculating these flows, it is crucial, as a first step, to quantify the flows of carbon as accurately as possible.In this study, we used the EcopathII software (ver 3.1) to analyse models of carbon flow through the food webs in the three main areas of the Baltic Sea; the Baltic proper, Bothnian Sea and Bothnian Bay. A previously published study on carbon flow in the Baltic Sea [Elmgren, R. 1984. Trophic dynamics in the enclosed, brackish Baltic Sea. Rapp. P.-V. Reun. — Cons. Int. Explor. Mer. (183) 152–169.] was complemented with the data on respiration and flow to detritus [Wulff, F., Ulanowicz, R. 1989. A comparative anatomy of the Baltic Sea and Chesapeeake Bay ecosystems. In: F. Wulff, J.G. Field, K.H. Mann (Eds.), Flow Analysis of Marine Ecosystems: Theory and Practice. New York: Springer-Verlag.] in order to present complete mass balance models of carbon. The purpose of re-evaluating previous models with new analytic tools was to check how well their carbon flows balance, and to provide a basis for improved mass balance models using more recent data, including nutrients other than carbon.The resulting mass balance networks for the Baltic proper, Bothnian Sea and the Bothnian Bay were shown to deviate from steady state. There was an organic carbon surplus of 45, 25 and 18 g C m−2 year−1 in the pelagic zones of the Baltic proper, Bothnian Sea and Bothnian Bay, respectively. The Ecopath network analysis confirmed that the overall carbon flow was highest in the Baltic proper, somewhat lower in the Bothnian Sea and much lower in the Bothnian Bay. The only clear differences in food web structure between the basins was that the average trophic level was lower for demersal fish in the Bothnian Sea and higher for macrofauna in the Bothnian Bay, compared to the other basins. The analysis showed weakness in our current understanding in Baltic Sea food webs and highlighted areas where improvements could be made with more recent data. 相似文献
11.
Boena Graca Zbigniew Witek Dorota Burska Izabela Biakowska Katarzyna ukawska-Matuszewska Jerzy Bolaek 《Journal of Marine Systems》2006,63(3-4):141-154
In this paper the results of a study on the distribution of pore water phosphates and ammonia, and their fluxes under anoxic condition in a deep (> 70 m) accumulation-type bottom of the south-eastern Baltic Sea, namely in the Gdańsk Deep and the adjacent areas, are presented. All measurements were taken during the growth period, i.e. in September 2000, April 2001 and June 2002. Benthic phosphate and ammonia fluxes were estimated using Fick's First Law. Phosphate and ammonia concentrations ranged from 7.5 to 266.3 μmol dm− 3 and from 53.6 to 1248.3 μmol dm− 3, respectively. The values recorded in the central part of the Gdańsk Deep were lower than those found both on its slopes and on the SW slope of the Gotland Deep. The lowest phosphate contents were typical of the Oblique Sill which separates the Gdańsk and Gotland Deeps.In 1993–2002, as a result of anoxia the sediments in the Gdańsk Deep released about 5.1 × 103 t P and 22.8 × 103 t N. These loads supplied on average 1.5% and 0.9% of phytoplankton's demand for P and N, respectively. In comparison to the total external load of nutrients discharged to the Gulf of Gdańsk (i.e. 8.79 × 103 t year− 1 Ptot and 130.79 × 103 t year− 1 Ntot; [Witek, Z., Humborg, Ch., Savchuk, O., Grelowski, A. and Łysiak-Pastuszak, E., 2003. Nitrogen and phosphorus budgets of the Gulf of Gdańsk (Baltic Sea). Est. Coast. Shelf Sci., 57:239–248.]), the return flux of P and N from the anoxic sediments to the water column in the Gdańsk Deep was a minor source of these elements. 相似文献
12.
The total gaseous mercury (TGM) in air over the coastal station at Hel and over the southern Baltic Sea was measured during the summer and winter conditions. Recorded 30-min resolution TGM data showed both higher concentrations and variability during the summer compared to the winter conditions. The summer TGM data ranged from 1.1 to 7.5 ng m−3, while the winter data ranged from 0.8 to 4.4 ng m−3. The TGM content in air over the southern Baltic Sea indicated that, in general, during the summer conditions, the sea-to-air transport of gaseous mercury dominated, while during the winter season, a tendency of gaseous mercury to sink into the water has been found. The evidences of enhanced water-to-air transfer of mercury vapour were noted, in particular, over the shallow waters of the Gulf of Gda
sk under the strong water-to-air temperature gradients. Obtained results indicate that under such conditions, the coastal waters could act as a significant source of mercury vapour that may contribute to the overall budget of atmospheric mercury over the Baltic proper. 相似文献
13.
Air–sea fluxes in the Caribbean Sea are presented based on measurements of partial pressure of CO2 in surface seawater, pCO2sw, from an automated system onboard the cruise ship Explorer of the Seas for 2002 through 2004. The pCO2sw values are used to develop algorithms of pCO2sw based on sea surface temperature (SST) and position. The algorithms are applied to assimilated SST data and remotely sensed winds on a 1° by 1° grid to estimate the fluxes on weekly timescales in the region. The positive relationship between pCO2sw and SST is lower than the isochemical trend suggesting counteracting effects from biological processes. The relationship varies systematically with location with a stronger dependence further south. Furthermore, the southern area shows significantly lower pCO2sw in the fall compared to the spring at the same SST, which is attributed to differences in salinity. The annual algorithms for the entire region show a slight trend between 2002 and 2004 suggesting an increase of pCO2sw over time. This is in accord with the increasing pCO2sw due the invasion of anthropogenic CO2. The annual fluxes of CO2 yield a net invasion of CO2 to the ocean that ranges from − 0.04 to − 1.2 mol m− 2 year− 1 over the 3 years. There is a seasonal reversal in the direction of the flux with CO2 entering into the ocean during the winter and an evasion during the summer. Year-to-year differences in flux are primarily caused by temperature anomalies in the late winter and spring period resulting in changes in invasion during these seasons. An analysis of pCO2sw before and after hurricane Frances (September 4–6, 2004), and wind records during the storm suggest a large local enhancement of the flux but minimal influence on annual fluxes in the region. 相似文献
14.
A flow-dependent critical-point method for investigating topographically controlled flow in natural channels is applied to the bottom current through the Irbe Strait connecting the Baltic proper and the Gulf of Riga. This approach is based on the functional formalism due to Gill [Gill, A.E., 1977. The hydraulics of rotating-channel flow. J. Fluid Mech., 80, 641–671.], and here is used for the stratified flow structure observed during the IRBEX-95 field campaign. A critical section of the realizable flow regime was found to be located slightly downstream of the most pronounced horizontal constriction of the channel. The predicted baroclinic volume flux 7200 m3 s−1 overestimates the observed mean bottom-water transport by around 30%, a discrepancy which most likely can be explained by the lack of sea level conditions and friction in the model. 相似文献
15.
16.
This paper is based on an advanced ecosystem model of the Baltic Sea (ERGOM [J. Mar. Sys. 25 (3–4) (2005) 405]), but with an increased resolution of the zooplankton stage variable [J. Plankton Res. 23 (2001) 1217; ICES Marine Science 219 (2003) 208]. The model copepods are represented by five stages: eggs, an aggregated variable of nauplii, two aggregated groups of copepodites and adults. The transfer among the stages, i.e., hatching, molting and reproduction, is controlled by food availability and temperature.As usual, the model food web is truncated at the level of zooplankton. The study explores the effects of different parametrization of zooplankton mortality and looks in particular on light-dependent rates. The light climate may serve a proxy for the effects of visual feeding of fish larvae and fish. Different choices of the mortality parameters can result in remarkable differences in abundances and biomass of the model zooplankton and in the timing of its development.It is found that the different choices of mortality affect the development of populations in several ways: Relative small initial differences of abundances at the beginning of the spring bloom are important for the development of the model populations. Higher mortality rates are less important at food rich conditions than at scarce resources. At low phytoplankton levels, the individual development of the copepods through the stages can be faster for elevated mortality rates because then less animals have to share the available food. 相似文献
17.
M. Powilleit G. Graf J. Kleine R. Riethmüller K. Stockmann M.A. Wetzel J.H.E. Koop 《Journal of Marine Systems》2009,75(3-4):441-451
Physical disturbance by disposal of dredged materials in estuarine and coastal waters may result in burial of benthic fauna. Survival rates depend on a variety of factors including the type and amount of disposed materials and the lifestyle of the organisms. Laboratory burial experiments using six common macrobenthic invertebrates from a brackish habitat of the western Baltic Sea were performed to test the organisms' escape reaction to dredged material disposal. Experimental lab-results were then extrapolated to a field situation with corresponding bottom topography and covering layer thicknesses at experimental field disposal study sites. Resulted survival rates were then verified by comparison with results of an earlier field study at the same disposal sites.Our experimental design in the lab included the disposal of two types of dredged material (i.e. ‘till’ and ‘sand/till mixture’) and two covering layer depths (i.e. 10–20 cm and 14–40 cm). All three bivalves Arctica islandica (Linnaeus), Macoma balthica (Linnaeus), Mya arenaria (Linnaeus) and the polychaete Nephtys hombergii (Savigny) successfully burrowed to the surface of a 32–41 cm deposited sediment layer of till or sand/till mixture and restored contact with the overlying water. These high escape potentials could partly be explained by the heterogeneous texture of the till and sand/till mixture with ‘voids’. The polychaete Bylgides (Harmothoe) sarsi (Malmgren) successfully burrowed through a 16 cm covering layer whereas the polychaete Lagis koreni (Malmgren) showed almost no escaping reaction. No general differences in escape behaviour after burial were detected between our test species from the brackish habitat and those reported in the literature for the same species in marine environments. However, a size-dependence in mobility of motile polychaetes and M. arenaria was apparent within our study. In comparison to a thick coverage, thin covering layers (i.e. 15–16 cm and 20 cm) increased the chance of the organisms (N. hombergii and M. arenaria) to reach the sediment surface after burial. This was not observed for the other test species. While crawling upward to the new sediment surfaces burrowing velocities of up to 8 cm d− 1 were observed for the bivalves and up to 20 cm d− 1 for N. hombergii. Between 17 and 79% of the test organisms showed burrowing activity after experimental burial. The survival rate (defined as the ability to regained contact with the sediment surface) ranged from 0 to 33%, depending on species and on burial depth. The organisms reached the sediment surface by burrowing (polychaetes and bivalves) and/or by extending their siphons to the new sediment surface (bivalves). The extrapolation of laboratory survival rates to the two disposal sites was obtained based on the in situ thicknesses of the dredged spoil layers measured by multi-beam echo sounder. This resulted in total average survival rate estimates for the test species of 45 and 43% for the two disposal sites. The results obtained during the laboratory tests and the following extrapolation to the field were verified by the range of results from a previous field study, using grab sampling shortly before and after a disposal event in June 2001. The effect of dredged material disposal on the tested Baltic Sea benthic macrofauna was assessed by extrapolating the verified laboratory results to the field. 相似文献
18.
By developing a steady state diagnostic model for a stratified deep-water mass, one is able to quantify both the mass flows and apparent oxygen removal in the Baltic proper deep water. The model is based on continuity of the assumed conservative observable volume, salinity and temperature. Second degree polynomials are fitted to observed vertical profiles of temperature as well as oxygen concentration to give a functional correspondence with the used spatial variable salinity. These relations are used in the model that calculate the water flows, oxygen flows and oxygen removal during four periods between 1959 and 1997. The model forms a boundary value problem, which is solved with a finite difference scheme. The model seems to give reasonable estimates of the flows. The oxygen removal is mainly balanced by inflow of oxygen with incoming water. The oxygen consumption is 4–8 μl O2 l−1 day−1, which corresponds to a degradation of organic matter in the range 30–60 g C m−2 year−1. 相似文献
19.
Ecophysiological growth characteristics and modeling of the onset of the spring bloom in the Baltic Sea 总被引:1,自引:0,他引:1
The onset of spring bloom in temperate areas is a transition period where the low productive, winter phytoplankton community is transformed into a high productive spring community. Downwelling irradiance, mixing depth and the ability of the phytoplankton community to utilize the light, are key parameters determining the timing of the onset of the spring bloom. Knowing these parameters would thus provide tools for modeling the spring bloom and enhance our knowledge of ecophysiological processes during this period.Our main objective with this study was to provide data for the growth characteristics of some key species forming the spring bloom in the Gulf of Finland, and to apply those results in a simple dynamic model for the onset of the spring bloom, in order to test if the timing of the spring bloom predicted by the models corresponds to field observations. We investigated the photosynthetic characteristics of three diatoms and two dinoflagellates (Chaetoceros wighamii, Melosira arctica, Thalassiosira baltica, Scrippsiella hangoei and Woloszynskia halophila), at low temperatures (4–5 °C). All of these species are common during spring bloom in the Baltic Sea.Cultures of these species were acclimated to different irradiance regimes prior to measurements of photosynthesis, respiration, pigment concentration and light absorption. We did not find a positive relationship between respiration and growth rate, and we hypothesize that this relationship, which is well established at higher temperatures, is negligible or absent at low temperatures (< 10 °C). Photosynthetic maximum (Pm), and maximum light utilization coefficient (α) was lowest and respiration (R) highest in the dinoflagellates.We made a model of the onset of the spring bloom in the western part of Gulf of Finland, using the obtained data together with monitoring data of mixing depth and water transparency from this area. Model results were compared to field observations of chlorophyll-a (Chl-a) concentration. There was a good agreement between the model predictions and the observed onset of the spring bloom for the diatoms. S. hangoei, however, was not able to reach positive production in the model, and W. halophila had the similar growth characteristics as S. hangoei. Consequently, these species must have other competition strategies enabling them to exist and grow during spring bloom. 相似文献
20.
Two dumping test sites of dredged sediment (glacial till, mixed sediment with sand) in the south-western Baltic Sea were repeatedly investigated with sidescan sonar. The first survey was conducted before dumping, the second survey 1 week after dumping, and eight more surveys were run during the following three and a half years. Sidescan mosaics were calculated from raw data. Comparing the mosaics, it becomes obvious that the initial strong microrelief of the dumping sites vanishes with time. The heaps of dumped material were eroded. Coarse material remains at the surface, fine material fills in the gaps between the heaps. Fine sediment structures (filaments and aureoles) created by the dumping process, and elongated traces of dumped material outside the dumping places disappeared with time. 相似文献