首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bus stops are integral elements of a transit system and as such, their efficient inspection and maintenance is required, for proper and attractive transit operations. Nevertheless, spatial dispersion and the extensive number of bus stops, even for mid-size transit systems, complicates scheduling of inspection and maintenance tasks. In this context, the problem of scheduling transit stop inspection and maintenance activities (TSIMP) by a two-stage optimization approach, is formulated and discussed. In particular, the first stage involves districting of the bus stop locations into areas of responsibility for different inspection and maintenance crews (IMCs), while in the second stage, determination of the sequence of bus stops to be visited by an IMC is modelled as a vehicle routing problem. Given the complexity of proposed optimization models, advanced versions of different metaheuristic algorithms (Harmony Search and Ant Colony Optimization) are exploited and assessed as possible options for solving these models. Furthermore, two variants of ACO are implemented herein; one implemented into a CPU parallel computing environment along with an accelerated one by means of general-purpose graphics processing unit (GPGPU) computing. The model and algorithms are applied to the Athens (Greece) bus system, whose extensive number of transit stops (over 7500) offers a real-world test bed for assessing the potential of the proposed modelling approach and solution algorithms. As it was shown for the test example examined, both algorithms managed to achieve optimized solutions for the problem at hand while there were fund robust with respect to their algorithmic parameters. Furthermore, the use of graphics processing units (GPU) managed to reduce of computational time required.  相似文献   

2.
Dispatchers in many public transit companies face the daily problem of assigning available buses to bus routes under conditions of bus shortages. In addition to this, weather conditions, crew absenteeism, traffic accidents, traffic congestion and other factors lead to disturbances of the planned schedule. We propose the Bee Colony Optimization (BCO) algorithm for mitigation of bus schedule disturbances. The developed model takes care of interests of the transit operator and passengers. The model reassigns available buses to bus routes and, if it is allowed, the model simultaneously changes the transportation network topology (it shortens some of the planned bus routes) and reassigns available buses to a new set of bus routes. The model is tested on the network of Rivera (Uruguay). Results obtained show that the proposed algorithm can significantly mitigate disruptions.  相似文献   

3.
The aircraft maintenance scheduling is one among the major decisions an airline has to make during its operation. Though maintenance scheduling comes as an end stage in an airline operation, it has potential for cost savings. Maintenance scheduling is an easily understood but difficult to solve problem. Given a flight schedule with aircraft assigned to it, the aircraft maintenance-scheduling problem is to determine which aircraft should fly which segment and when and where each aircraft should undergo different levels of maintenance check required by the Federal Aviation Administration. The objective is to minimize the maintenance cost and any costs incurred during the re-assignment of aircraft to the flight segments.This paper provides a complete formulation for maintenance scheduling and a heuristic approach to solve the problem. The heuristic procedure provides good solutions in reasonable computation time. This model can be used by mid-sized airline corporations to optimize their maintenance costs.  相似文献   

4.
Abstract

The need for dependable and flexible models of transit vehicle maintenance has been well established in the literature as a means for improving daily operations, capital planning and service quality. Stemming from the practical need to predict the duration of maintenance activities and active service time for buses, this paper uses the principles of duration modeling to address two important questions: what is the duration of vehicle maintenance activities and, given that a bus is in active service, how long will it take? We extend previous work by including exogenous factors directly affecting maintenance duration and active service time in fully parametric duration models and examine such activities for the transit system in Athens (Greece). Results indicate that vehicle age, kilometers travelled and repair type are amongst the most important determinants of maintenance duration.  相似文献   

5.
As is well known, bus systems are naturally unstable. Without control, buses on a single line tend to bunch, reducing their punctuality in meeting a schedule. Although conventional schedule-based strategies that hold buses at control points can alleviate this problem these methods require too much slack, which slows buses. This delays on-board passengers and increases operating costs.It is shown that dynamic holding strategies based on headways alone cannot help buses adhere to a schedule. Therefore, a family of dynamic holding strategies that use bus arrival deviations from a virtual schedule at the control points is proposed. The virtual schedule is introduced whether the system is run with a published schedule or not. It is shown that with this approach, buses can both closely adhere to a published schedule and maintain regular headways without too much slack.A one-parameter version of the method can be optimized in closed form. This simple method is shown to be near-optimal. To put it in practice, the only data needed in real time are the arrival times of the current bus and the preceding bus at the control point relative to the virtual schedule. The simple method was found to require about 40% less slack than the conventional schedule-based method. When used only to regulate headways it outperforms headway-based methods.  相似文献   

6.
The traditional vehicle scheduling problem attempts to minimize capital and operating costs. However, the carbon footprint and toxic air pollutants have become an increasingly important consideration. This paper studies the bus-scheduling problem and evaluates new types of buses that use alternative energy sources to reduce emissions, including some toxic air pollutants and carbon dioxide. A time-space network based approach is applied to formulate the problem to reduce the numbers of arcs in the underlying network; CPLEX is used to solve the problem. The results show that the bus-scheduling model can significantly reduce the bus emissions – hence reducing the carbon footprint of the transit operation – while only slightly increasing operating costs.  相似文献   

7.
Many transit systems outside North America are characterized by networks with extensively overlapping routes and buses frequently operating at, or close to, capacity. This paper addresses the problem of allocating a fleet of buses between routes in this type of system; a problem that must be solved recurrently by transit planners. A formulation of the problem is developed which recognizes passenger route choice behavior, and seeks to minimize a function of passenger wait time and bus crowding subject to constraints on the number of buses available and the provision of enough capacity on each route to carry all passengers who would select it. An algorithm is developed based on the decomposition of the problem into base allocation and surplus allocation components. The base allocation identifies a feasible solution using an (approx.) minimum number of buses. The surplus allocation is illustrated for the simple objective of minimizing the maximum crowding level on any route. The bus allocation procedure developed in this paper has been applied to part of the Cairo bus system in a completely manual procedure, and is proposed to be the central element of a short-range bus service planning process for that city.  相似文献   

8.
Disruptions in carrying out planned bus schedules occur daily in many public transit companies. Disturbances are often so large that it is necessary to perform re-planning of planned bus and crew activities. Dispatchers in charge of traffic operations must frequently find an answer to the following question in a very short period of time: How should available buses be distributed among bus routes in order to minimize total passengers' waiting time on the network? We propose a model for assigning buses to scheduled routes when there is a shortage of buses. The proposed model is based on the bee colony optimization (BCO) technique. It is a biologically inspired method that explores collective intelligence applied by honey bees during the nectar collecting process. It has been shown that this developed BCO approach can generate high-quality solutions within negligible processing times.  相似文献   

9.
Kofi Obeng 《Transportation》1988,15(4):297-316
This paper develops a conceptual framework for bus maintenance based on path analysis and applies it to forty-eight bus transit systems. The application determines the total, direct, and indirect effects of the variables identified as having significant causal links with maintenance cost per mile. These variables are identified using the stepwise regression method. The findings are that the wage rate and fleet size increase maintenance cost directly and indirectly. In terms of the standardized regression coefficients, fleet size has been found to be the most important factor affecting maintenance cost per mile, followed by the proportion of articulated buses, the wage rate and local subsidy in that order. The proportion of articulated buses has been found to reduce maintenance cost per mile directly and to increase it indirectly. The indirect path coefficient of the proportion of articulated buses is 0.1794 whereas the direct path coefficient is –0.351. Similarly local subsidy as a proportion of revenue increases maintenance cost per mile directly and reduces it indirectly. The corresponding path coefficients for the direct and indirect effects of local subsidy are 0.2553 and –0.1073. In addition population density and the peak-base ratio are positively and significantly associated with miles between roadcalls. The implications of these findings are briefly examined in this paper. Because the path analysis methodology allows the direct and indirect effects of a causal variable to be determined, it is recommended for policy analysis.  相似文献   

10.
We address the problem of simultaneously scheduling trains and planning preventive maintenance time slots (PMTSs) on a general railway network. Based on network cumulative flow variables, a novel integrated mixed-integer linear programming (MILP) model is proposed to simultaneously optimize train routes, orders and passing times at each station, as well as work-time of preventive maintenance tasks (PMTSs). In order to provide an easy decomposition mechanism, the limited capacity of complex tracks is modelled as side constraints and a PMTS is modelled as a virtual train. A Lagrangian relaxation solution framework is proposed, in which the difficult track capacity constraints are relaxed, to decompose the original complex integrated train scheduling and PMTSs planning problem into a sequence of single train-based sub-problems. For each sub-problem, a standard label correcting algorithm is employed for finding the time-dependent least cost path on a time-space network. The resulting dual solutions can be transformed to feasible solutions through priority rules. Numerical experiments are conducted on a small artificial network and a real-world network adapted from a Chinese railway network, to evaluate the effectiveness and computational efficiency of the integrated optimization model and the proposed Lagrangian relaxation solution framework. The benefits of simultaneously scheduling trains and planning PMTSs are demonstrated, compared with a commonly-used sequential scheduling method.  相似文献   

11.
Many existing algorithms for bus arrival time prediction assume that buses travel at free‐flow speed in the absence of congestion. As a result, delay incurred at one stop would propagate to downstream stops at the same magnitude. In reality, skilled bus operators often constantly adjust their speeds to keep their bus on schedule. This paper formulates a Markov chain model for bus arrival time prediction that explicitly captures the behavior of bus operators in actively pursuing schedule recovery. The model exhibits some desirable properties in capturing the schedule recovery process. It guarantees provision of the schedule information if the probability of recovering from the current schedule deviation is sufficiently high. The proposed model can be embedded into a transit arrival time estimation model for transit information systems that use both real‐time and schedule information. It also has the potential to be used as a decision support tool to determine when dynamic or static information should be used.  相似文献   

12.
In the real world, planned aircraft maintenance schedules are often affected by incidents. Airlines may thus need to adjust their aircraft maintenance schedules following the incidents that occur during routine operations. In tradition, such aircraft maintenance schedule adjustment has been performed manually, a process which is neither effective nor efficient, especially when the problem scale is large. In this study, an aircraft maintenance schedule adjustment model is developed, with the objective of minimizing the total system cost, subject to the related operating constraints. The model is formulated as a zero-one integer program and is solved using a mathematical programing solver. The effectiveness of the model is evaluated by application to a case study using data from an aircraft maintenance center in Taiwan. The test results show the proposed model, as well as the scheduling rules abstracted from the results are useful for the decision maker to adjust good maintenance schedules.  相似文献   

13.
A schedule consisting of an appropriate arrival time at each time control point can ensure reliable transport services. This paper develops a novel time control point strategy coupled with transfer coordination for solving a multi‐objective schedule design problem to improve schedule adherence and reduce intermodal transfer disutility. The problem is formulated using a robust mixed‐integer nonlinear programming model. The mixed‐integer nonlinear programming model is equivalently transformed into a robust mixed‐integer linear programming model, which is then approximated by a deterministic mixed‐integer linear programming model through Monte Carlo simulation. Thus, the optimal scheduled arrival time at each time control point can be precisely obtained using cplex . Numerical experiments based on three bus lines and the mass rapid transit system in Singapore are presented, and the results show that the schedule determined using the developed model is able to provide not only reliable bus service but also a smooth transfer experience for passengers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Recently, bus transit operators have begun to adopt technologies that enable bus locations to be tracked from a central location in real-time. Combined with other technologies, such as automated passenger counting and wireless communication, it is now feasible for these operators to execute a variety of real-time strategies for coordinating the movement of buses along their routes. This paper compares control strategies that depend on technologies for communication, tracking and passenger counting, to those that depend solely on local information (e.g., time that a bus arrived at a stop, and whether other connecting buses have also arrived). We also develop methods to forecast bus arrival times, which are most accurate for lines with long headways, as is usually the case in timed transfer systems. These methods are tested in simulations, which demonstrate that technology is most advantageous when the schedule slack is close to zero, when the headway is large, and when there are many connecting buses.  相似文献   

15.
Time of day partition of bus operating hours is a prerequisite of bus schedule design. Reasonable partition plan is essential to improve the punctuality and level of service. In most mega cities, bus vehicles have been equipped with global positioning system (GPS) devices, which is convenient for transit agency to monitor bus operations. In this paper, a new algorithm is developed based on GPS data to partition bus operating hours into time of day intervals. Firstly, the impacts of passenger demand and network traffic state on bus operational performance are analyzed. Then bus dwell time at stops and inter-stop travel time, which can be attained based on GPS data, are selected as partition indexes. For buses clustered in the same time-of-day interval, threshold values of differences in dwell time at stops and inter-stop travel time are determined. The buses in the same time-of-day interval should have adjacent dispatching numbers, which is set as a constraint. Consequently, a partition algorithm with three steps is developed. Finally, a bus route in Suzhou China is taken as an example to validate the algorithm. Three partition schemes are given by setting different threshold values for the two partition indexes. The present scheme in practice is compared with the three proposed schemes. To balance the number of ToD intervals and partition precision, a Benefit Evaluation Index is proposed, for a better time-of-day interval plan.  相似文献   

16.
The bus driver scheduling (BDS) problem in a transit company consists of establishing, at minimum cost, a list of work-days in which a driver is assigned to each bus in the given time-table and all clauses of the union contract are respected. In this paper we present a general mathematical programming formulation for the BDS problem. Because, in general, the problem is too large to be solved directly, we introduce a relation of the problem and three different solution approaches. Computational results obtained on real life problems indicate that mathematical programming techniques can solve the BDS problem efficiently.  相似文献   

17.
Railway infrastructure is characterized by intensive capital investment, long lifecycle and low return. It is crucial to attain a reasonable system reliability while keeping the recurrent cost manageable throughout the asset lifecycle. Power feeding substations are the key assets on electrified rail lines. As they are subject to various adverse operating conditions, maintenance works of different levels are scheduled to ensure reliability and extend the asset life time if possible. Maintenance scheduling is often regarded as a trade-off between reliability and cost. This study incorporates considerations of different levels of maintenance activities to balance between reliability and cost. In establishing the system reliability model, the contribution of individual component reliability toward the overall system reliability is extracted from the functional relationship among the components. Solution methodologies to this scheduling problem are also proposed here. Evaluation of the scheduling model and the proposed solution is discussed and analyzed through simulation. To cater for the operating conditions in different systems, the impact of weighting factors between reliability and cost on the variations of resulting schedules will be investigated.  相似文献   

18.
This paper presents a transit simulation model designed to support evaluation of operations, planning and control, especially in the context of Advanced Public Transportation Systems (APTS). Examples of potential applications include frequency determination, evaluation of real-time control strategies for schedule maintenance and assessing the effects of vehicle scheduling on the level of service. Unlike most previous efforts in this area, the simulation model is built on a platform of a mesoscopic traffic simulation model, which allows modeling of the operation dynamics of large-scale transit systems taking into account the stochasticity due to interactions with road traffic. The capabilities of Mezzo as an evaluation tool of transit operations are demonstrated with an application to a real-world high-demand bus line in the Tel-Aviv metropolitan area under various scenarios. The headway distributions at two stops are compared with field observations and show good consistency between simulated and observed data.  相似文献   

19.
This paper presents a mathematical model to plan emergencies in a densely populated urban zone where a certain numbers of pedestrians depend on transit for evacuation. The proposed model features an integrated operational framework, which simultaneously guides evacuees through urban streets and crosswalks (referred to as “the pedestrian network”) to designated pickup points (e.g., bus stops), and routes a fleet of buses at different depots to those pick‐up points and transports evacuees to their destinations or safe places. In this level, the buses are routed through the so‐called “vehicular network.” An integrated mixed integer linear program that can effectively take into account the interactions between the aforementioned two networks is formulated to find the maximal evacuation efficiency in two networks. Because the large instances of the proposed model are mathematically difficult to solve to optimality, a two‐stage heuristic is developed to solve larger instances of the model. Results from hundreds of numerical examples analysis indicate that proposed heuristic works well in providing (near) optimal or feasibly good solutions for medium‐scale to large‐scale instances that may arise in real transit‐based evacuation situations in a much shorter amount of computational time compared with cplex (can find optimal/feasible solutions for only five instances within 3 hours of running). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Transportation planners and policy analysts require, for scenario testing, a detailed fuel consumption model of public transit operating in multimodal corridors. Although much effort has been devoted to the development of detailed methodology for estimating fuel consumption of automobile travel on freeways and arterials, the same is not the case for public transit. This paper presents methodology for the estimation of fuel consumption for bus operation on transitways/busways serving major travel corridors. Bus fuel consumption model is reported for standard and articulated buses. This model was adapted from an existing heavy vehicle fuel use model by incorporating the transitway design and bus operational characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号