首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The continuously increasing daily traffic congestions on motorway networks around the world call for innovative control measures that would drastically improve the current traffic conditions. Mainstream traffic flow control (MTFC) is proposed as a novel and efficient motorway traffic management tool, and its possible implementation and principal impact on traffic flow efficiency is analysed. Variable speed limits, suitably operated and enforced, is considered as one (out of several possible) way(s) for MTFC realisation, either as a stand-alone measure or in combination with ramp metering. A previously developed, computationally efficient software tool for optimal integrated motorway network traffic control including MTFC is applied to a large-scale motorway ring-road. It is demonstrated via several investigated control scenarios that traffic flow can be substantially improved via MTFC with or without integration with coordinated ramp metering actions.  相似文献   

2.
Traffic flow propagation stability is concerned about whether a traffic flow perturbation will propagate and form a traffic shockwave. In this paper, we discuss a general approach to the macroscopic traffic flow propagation stability for adaptive cruise controlled (ACC) vehicles. We present a macroscopic model with velocity saturation for traffic flow in which each individual vehicle is controlled by an adaptive cruise control spacing policy. A nonlinear traffic flow stability criterion is investigated using a wavefront expansion technique. Quantitative relationships between traffic flow stability and model parameters (such as traffic flow and speed, etc.) are derived for a generalized ACC traffic flow model. The newly derived stability results are in agreement with previously derived results that were obtained using both microscopic and macroscopic models with a constant time headway (CTH) policy. Moreover, the stability results derived in this paper provide sufficient and necessary conditions for ACC traffic flow stability and can be used to design other ACC spacing policies.  相似文献   

3.
In most large cities traffic flow is controlled or manipulated in a number of ways. The methods used are mostly negative in the sense that they restrict the driver's choice of alternative routes rather than encourage him to use a particular one. This paper reviews some of the conventional measures and goes on to consider whether a more positive approach to route control might be justified, by inducing a more efficient or acceptable pattern of traffic movement in urban areas. The principal criteria for an efficient pattern are taken to be the total rate of expenditure of vehicle mileage and the frequency of route crossings, and an attempt is made to evaluate the potential benefits of route control in these terms. Social, technical and political considerations suggest that compulsory control will not be feasible for some time (at least, in the UK), but if the benefits to drivers as individuals can be shown to be worthwhile an advisory system might be practicable. Some possible systems are briefly outlined.The author is grateful to the City Engineer of Westminster City Council, Mr A.J. Cryer, for permission to publish this paper,which, however, does not necessarily represent the views . City Council. The author is greatly indebted to E. M. Holroyd for numerous suggestions and advice.  相似文献   

4.
Although many types of traffic sensors are currently in use, all have some drawbacks, and widespread deployment of such sensor systems has been difficult due to high costs. Due to these deficiencies, there is a need to design and evaluate a low cost sensor system that measures both vehicle speed and counts. Fulfilling this need is the primary objective of this research. Compared to the many existing infrared-based concepts that have been developed for traffic data collection, the proposed method uses a transmission-based type of optical sensor rather than a reflection-based type. Vehicles passing between sensors block transmission of the infrared signal, thus indicating the presence of a vehicle. Vehicle speeds are then determined using the known distance between multiple pairs of sensors. A prototype of the sensor system, which uses laser diode and photo detector pairs with the laser directly projected onto the photo detector, was first developed and tested in the laboratory. Subsequently this experimental prototype was implemented for field testing. The traffic flow data collected were compared to manually collected vehicle speed and traffic counts and a statistical analysis was done to evaluate the accuracy of the sensor system. The analysis found no significant difference between the data generated by the sensor system and the data collected manually at a 95% confidence interval. However, the testing scenarios were limited and so further analysis is necessary to determine the applicability in more congested urban areas. The proposed sensor system, with its simple technology and low cost, will be suitable for saturated deployment to form a densely distributed sensor network and can provide unique support for efficient traffic incident management. Additionally, because it may be quickly installed in the field without the need of elaborate fixtures, it may be deployed for use in temporary traffic management applications such as traffic management in road work zones or during special events.  相似文献   

5.
Traffic waves are phenomena that emerge when the vehicular density exceeds a critical threshold. Considering the presence of increasingly automated vehicles in the traffic stream, a number of research activities have focused on the influence of automated vehicles on the bulk traffic flow. In the present article, we demonstrate experimentally that intelligent control of an autonomous vehicle is able to dampen stop-and-go waves that can arise even in the absence of geometric or lane changing triggers. Precisely, our experiments on a circular track with more than 20 vehicles show that traffic waves emerge consistently, and that they can be dampened by controlling the velocity of a single vehicle in the flow. We compare metrics for velocity, braking events, and fuel economy across experiments. These experimental findings suggest a paradigm shift in traffic management: flow control will be possible via a few mobile actuators (less than 5%) long before a majority of vehicles have autonomous capabilities.  相似文献   

6.
An expert system for the air traffic flow management (ATFM) problem is presented. Two main prototypes have been constructed, one for timetable rescheduling that attempts to modify airline timetables to smooth traffic peaks at airports during rush-hours and another for centralized flow control that works to forecast the place, time and magnitude of the congestion and to propose mitigative actions. Simulations for the Brazilian ATFM, including the principal 14 airports, show the potential usefulness of the expert system.  相似文献   

7.
This paper proposes a behavior-based consistency-seeking (BBCS) model as an alternative to the dynamic traffic assignment paradigm for the real-time control of traffic systems under information provision. The BBCS framework uses a hybrid probabilistic–possibilistic model to capture the day-to-day evolution and the within-day dynamics of individual driver behavior. It considers heterogeneous driver classes based on the broad behavioral characteristics of drivers elicited from surveys and past studies on driver behavior. Fuzzy logic and if–then rules are used to model the various driver behavior classes. The approach enables the modeling of information characteristics and driver response to be more consistent with the real-world. The day-to-day evolution of driver behavior characteristics is reflected by updating the appropriate model parameters based on the current day’s experience. The within-day behavioral dynamics are reactive and capture drivers’ actions vis-à-vis the ambient driving conditions by updating the weights associated with the relevant if–then rules. The BBCS model is deployed by updating the ambient driver behavior class fractions so as to ensure consistency with the real-time traffic sensor measurements. Simulation experiments are conducted to investigate the real-time applicability of the proposed framework to a real-world network. The results suggest that the approach can reasonably capture the within-day variations in driver behavior model parameters and class fractions in the traffic stream. Also, they indicate that deployment-capable information strategies can be used to influence system performance. From a computational standpoint, the approach is real-time deployable.  相似文献   

8.
This paper develops a mathematical approach to optimize a time-dependent deployment plan of autonomous vehicle (AV) lanes on a transportation network with heterogeneous traffic stream consisting of both conventional vehicles (CVs) and AVs, so as to minimize the social cost and promote the adoption of AVs. Specifically, AV lanes are exclusive lanes that can only be utilized by AVs, and the deployment plan specifies when, where, and how many AV lanes to be deployed. We first present a multi-class network equilibrium model to describe the flow distributions of both CVs and AVs, given the presence of AV lanes in the network. Considering that the net benefit (e.g., reduced travel cost) derived from the deployment of AV lanes will further promote the AV adoption, we proceed to apply a diffusion model to forecast the evolution of AV market penetration. With the equilibrium model and diffusion model, a time-dependent deployment model is then formulated, which can be solved by an efficient solution algorithm. Lastly, numerical examples based on the south Florida network are presented to demonstrate the proposed models.  相似文献   

9.
This paper considers the effects of different strategies that might be considered to reduce the impact made by road traffic on air pollution in London. The management of road traffic in large urban areas is one of many options being considered to reduce pollutant emissions to meet statutory air pollution objectives. Increasingly, the concept of a low emission zone (LEZ) is being proposed as a means of achieving this reduction. An assessment has been made of different LEZ scenarios in central London, which involve reducing traffic flow or modifying the vehicle technology mix. Methods of predicting annual mean nitrogen dioxide concentrations utilising comprehensive traffic data and air pollution measurements have been used to develop empirical prediction models. Comparisons with statutory air pollution objectives show that significant action will be required to appreciably decrease concentrations of nitrogen dioxide close to roads. The non-linear atmospheric chemistry leading to the formation of nitrogen dioxide, results in a complex relationship between vehicle emissions and ambient concentrations of the pollutant. We show that even ambitious LEZ scenarios in central London produce concentrations of nitrogen oxides that are achieved through a “do nothing” scenario only five years later.  相似文献   

10.
Currently most optimization methods for urban transport networks (i) are suited for networks with simplified dynamics that are far from real-sized networks or (ii) apply decentralized control, which is not appropriate for heterogeneously loaded networks or (iii) investigate good-quality solutions through micro-simulation models and scenario analysis, which make the problem intractable in real time. In principle, traffic management decisions for different sub-systems of a transport network (urban, freeway) are controlled by operational rules that are network specific and independent from one traffic authority to another. In this paper, the macroscopic traffic modeling and control of a large-scale mixed transportation network consisting of a freeway and an urban network is tackled. The urban network is partitioned into two regions, each one with a well-defined Macroscopic Fundamental Diagram (MFD), i.e. a unimodal and low-scatter relationship between region density and outflow. The freeway is regarded as one alternative commuting route which has one on-ramp and one off-ramp within each urban region. The urban and freeway flow dynamics are formulated with the tool of MFD and asymmetric cell transmission model, respectively. Perimeter controllers on the border of the urban regions operating to manipulate the perimeter interflow between the two regions, and controllers at the on-ramps for ramp metering are considered to control the flow distribution in the mixed network. The optimal traffic control problem is solved by a Model Predictive Control (MPC) approach in order to minimize total delay in the entire network. Several control policies with different levels of urban-freeway control coordination are introduced and tested to scrutinize the characteristics of the proposed controllers. Numerical results demonstrate how different levels of coordination improve the performance once compared with independent control for freeway and urban network. The approach presented in this paper can be extended to implement efficient real-world control strategies for large-scale mixed traffic networks.  相似文献   

11.
The integration of internet and mobile phones has opened the door to a new wave of utilizing private vehicles as probes not only for performance evaluation but for traffic control as well, gradually replacing the role of traffic surveillance systems as the dominant source of traffic data. To prepare for such a paradigm shift, one needs to overcome some key institutional barriers, in particular, the privacy issue. A Highway Voting System (HVS) is proposed to address this issue in which drivers provide link- and/or path-based vehicle data to the traffic management system in the form of “votes” in order to receive favorable service from traffic control. The proposed HVS offers a platform that links data from individual vehicles directly with traffic control. In the system, traffic control responds to voting vehicles in a way similar to the current system responding to prioritized vehicles and providing the requested services accordingly. We show in the paper that the proposed “voting” system can effectively resolve the privacy issue which often hampers traffic engineers from getting detailed data from drivers. Strategies to entice drivers into “voting” so as to increase the market penetration level under all traffic conditions are discussed. Though the focus of the paper is on addressing the institutional issues associated with data acquisition from individual vehicles, other research topics associated with the proposed system are identified. Two examples are given to demonstrate the impact of the proposed system on algorithm development and traffic control.  相似文献   

12.
Current air traffic control systems are mainly conceived to ensure the safety of flights by means of tactical interventions, because of the difficulty of accurately foreseeing the traffic evolution. In fact, in real traffic conditions, planes are often penalized since sometimes safety standards are redundant. Today, this management philosophy is no longer valid because of congestion phenomena which often occur in the most important terminal areas. Therefore, as to future control systems it is necessary to introduce not only more automated procedures to keep adequate safety levels, but also planning functions in order to increase the system capacity and to improve system efficiency. In recent years several studies have been carried out, new control concepts have been introduced and some optimization models and algorithms developed to improve air traffic management. In this paper a survey of our early works in this field is reported and a multilevel model of air traffic management is proposed and discussed. The functions corresponding to the on-line control, that is flow control, strategic control of flights and aircraft sequencing in a terminal area, are examined and the optimization models and solution algorithms are illustrated. Finally, relevant problems coped by recent research are mentioned and new trends are indicated.  相似文献   

13.
The forecasting of short-term traffic flow is one of the key issues in the field of dynamic traffic control and management. Because of the uncertainty and nonlinearity, short-term traffic flow forecasting could be a challenging task. Artificial Neural Network (ANN) could be a good solution to this issue as it is possible to obtain a higher forecasting accuracy within relatively short time through this tool. Traditional methods for traffic flow forecasting generally based on a separated single point. However, it is found that traffic flows from adjacent intersections show a similar trend. It indicates that the vehicle accumulation and dissipation influence the traffic volumes of the adjacent intersections. This paper presents a novel method, which considers the travel flows of the adjacent intersections when forecasting the one of the middle. Computational experiments show that the proposed model is both effective and practical.  相似文献   

14.
In this paper, a novel mesoscopic multilane model is proposed to enable simultaneous simulation of mandatory and discretionary lane-changing behaviors to realistically capture multilane traffic dynamics. The model considers lane specific fundamental diagrams to simulate dynamic heterogeneous lane flow distributions on expressways. Moreover, different priority levels are identified according to different lane-changing motivations and the corresponding levels of urgency. Then, an algorithm is proposed to estimate the dynamic mandatory and discretionary lane-changing demands. Finally, the lane flow propagation is defined by the reaction law of the demand–supply functions, which can be regarded as an extension of the Incremental-Transfer and/or Priority Incremental-Transfer principles. The proposed mesoscopic multilane cell transmission model is calibrated and validated on a complex weaving section of the State Route 241 freeway in Orange County, California, showing both the positive and negative impact of lane changing maneuvers, e.g., balancing effect and capacity drop, respectively. Moreover, the empirical study verifies that the model requires no additional data other than the cell transmission model does. Thus, the proposed model can be deployed as a simple simulation tool for accessing dynamic mesoscopic multilane traffic state from data available to most management centers, and also the potential application in predicting the impact of traffic incident or lane control strategy.  相似文献   

15.
完整街道扫描仪以"连通"为目的构建,以移动载具的形式在未来城市的路网中部署、载人运行,借助其上搭载的传感器、车联网功能扩展出对交通流、街道环境、行人进行扫描、记录、分析、影响的能力,成为一种面向未来智慧城市的人居环境感知系统。当完整街道扫描仪成规模部署后,其作用将不仅限制于交通领域,还将深入参与进共享经济、数据安全、城市发展规划,有潜力成为一种新的经济发展模式。本文聚焦从单车智能到人居环境智能的城市管理智能化维度需求演变,从未来交通管理、未来城市管理与数字经济产业支撑三个方向对完整街道扫描仪满足未来智慧城市的需求进行阐述。同时,也总结出了完整街道扫描仪的原型系统概念模型,以及已搭建进行的示范应用。  相似文献   

16.
Anticipatory optimal network control is defined as the problem of determining the set of control actions that minimizes a network-wide objective function. This not only takes into account local consequences on the propagation of flows, but also the global network-wide routing behavior of the users. Such an objective function is, in general, defined in a centralized setting, as knowledge regarding the whole network is needed to correctly compute it. Reaching a level of centralization sufficient to attain network-wide control objectives is however rarely realistic in practice. Multiple authorities are influencing different portions the network, separated either hierarchically or geographically. The distributed nature of networks and traffic directly influences the complexity of the anticipatory control problem.This is our motivation for this work, in which we introduce a decomposition mechanism for the global anticipatory network traffic control problem, based on dynamic clustering of traffic controllers. Rather than solving the full centralized problem, or blindly performing a full controller-wise decomposition, this technique allows recognizing when and which controllers should be grouped in clusters, and when, instead, these can be optimized separately.The practical relevance with respect to our motivation is that our approach allows identification of those network traffic conditions in which multiple actors need to actively coordinate their actions, or when unilateral action suffices for still approximating global optimality.This clustering procedure is based on well-known algebraic and statistical tools that exploit the network’s sensitivity to control and its structure to deduce coupling behavior. We devise several case studies in order to assess our newly introduced procedure’s performances, in comparison with fully decomposed and fully centralized anticipatory optimal network control, and show that our approach is able to outperform both centralized and decomposed procedures.  相似文献   

17.
The second-best congestion pricing schemes including common optimum, one cordon, and multiple cordons schemes are compared with the first-best optimum pricing scheme. A cross-subsidy effect exists in these second-best pricing models. However, the scheme with more cordons will diminish the cross-subsidy and approach an efficient and equitable outcome. The relative efficiency of a cordon pricing scheme for the case of Taipei metropolis is very high. One single cordon yields excellent performance of 93% relative efficiency. There might be some factors causing the good results: the uncongested traffic condition, the linear unit distance cost in traffic flow forming a nonlinear cost function, and the trip demands with continuous space and the same destination (the central business district) in the network.  相似文献   

18.
On August 1, 2007, the collapse of the I-35W bridge over the Mississippi River in Minneapolis abruptly interrupted the usual route of about 140,000 daily vehicle trips, which substantially disturbed regular traffic flow patterns on the network. It took several weeks for the network to re-equilibrate, during which period travelers continued to learn and adjust their travel decisions. A good understanding of this process is crucial for traffic management and the design of mitigation schemes. Data from loop-detectors, bus ridership statistics, and a survey are analyzed and compared, revealing the evolving traffic reactions to the bridge collapse and how individual choices could help to explain such dynamics. Findings on short-term traffic dynamics and behavioral reactions to this major network disruption have important implications for traffic management in response to future scenarios.  相似文献   

19.
Typical engineering research on traffic safety focuses on identifying either dangerous locations or contributing factors through a post-crash analysis using aggregated traffic flow data and crash records. A recent development of transportation engineering technologies provides ample opportunities to enhance freeway traffic safety using individual vehicular information. However, little research has been conducted regarding methodologies to utilize and link such technologies to traffic safety analysis. Moreover, traffic safety research has not benefited from the use of hurdle-type models that might treat excessive zeros more properly than zero-inflated models.This study developed a new surrogate measure, unsafe following condition (UFC), to estimate traffic crash likelihood by using individual vehicular information and applied it to basic sections of interstate highways in Virginia. Individual vehicular data and crash data were used in the development of statistical crash prediction models including hurdle models. The results showed that an aggregated UFC measure was effective in predicting traffic crash occurrence, and the hurdle Poisson model outperformed other count data models in a certain case.  相似文献   

20.
Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication are emerging components of intelligent transport systems (ITS) based on which vehicles can drive in a cooperative way and, hence, significantly improve traffic flow efficiency. However, due to the high vehicle mobility, the unreliable vehicular communications such as packet loss and transmission delay can impair the performance of the cooperative driving system (CDS). In addition, the downstream traffic information collected by roadside sensors in the V2I communication may introduce measurement errors, which also affect the performance of the CDS. The goal of this paper is to bridge the gap between traffic flow modelling and communication approaches in order to build up better cooperative traffic systems. To this end, we aim to develop an enhanced cooperative microscopic (car-following) traffic model considering V2V and V2I communication (or V2X for short), and investigate how vehicular communications affect the vehicle cooperative driving, especially in traffic disturbance scenarios. For these purposes, we design a novel consensus-based vehicle control algorithm for the CDS, in which not only the local traffic flow stability is guaranteed, but also the shock waves are supposed to be smoothed. The IEEE 802.11p, the defacto vehicular networking standard, is selected as the communication protocols, and the roadside sensors are deployed to collect the average speed in the targeted area as the downstream traffic reference. Specifically, the imperfections of vehicular communication as well as the measured information noise are taken into account. Numerical results show the efficiency of the proposed scheme. This paper attempts to theoretically investigate the relationship between vehicular communications and cooperative driving, which is needed for the future deployment of both connected vehicles and infrastructure (i.e. V2X).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号