首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

This paper investigates a transportation scheduling problem in large-scale construction projects under a fuzzy random environment. The problem is formulated as a fuzzy, random multi-objective bilevel optimization model where the construction company decides the transportation quantities from every source to every destination according to the criterion of minimizing total transportation cost and transportation time on the upper level, while the transportation agencies choose their transportation routes such that the total travel cost is minimized on the lower level. Specifically, we model both travel time and travel cost as triangular fuzzy random variables. Then the multi-objective bilevel adaptive particle swarm optimization algorithm is proposed to solve the model. Finally, a case study of transportation scheduling for the Shuibuya Hydropower Project in China is used as a real world example to demonstrate the practicality and efficiency of the optimization model and algorithm.  相似文献   

2.
This paper investigates the transportation network reliability based on the information provided by detectors installed on some links. A traffic flow simulator (TFS) model is formulated for assessing the network reliability (in terms of travel time reliability), in which the variation of perceived travel time error and the fluctuations of origin-destination (OD) demand are explicitly considered. On the basis of prior OD demand and partial updated detector data, the TFS can estimate the link flows for the whole network together with link/path travel times, and their variance and covariance. The travel time reliability by OD pair can also be assessed and the OD matrix can be updated simultaneously. A Monte Carlo based algorithm is developed to solve the TFS model. The application of the proposed TFS model is illustrated by a numerical example.  相似文献   

3.
Travel time information influences driver behaviour and can contribute to reducing congestion and improving network efficiency. Consequently many road authorities disseminate travel time information on road side signs, web sites and radio traffic broadcasts. Operational systems commonly rely on speed data obtained from inductive loop detectors and estimate travel times using simple algorithms that are known to provide poor predictions particularly on either side of the peak period. This paper presents a new macroscopic model for predicting freeway travel times which overcomes the limitations of operational ‘instantaneous’ speed models by drawing on queuing theory to model the processing of vehicles in sections or cells of the freeway. The model draws on real-time speed, flow and occupancy data and is formulated to accommodate varying geometric conditions, the relative distribution of vehicles along the freeway, variations in speed limits, the impact of ramp flows and fixed or transient bottlenecks. Field validation of the new algorithm was undertaken using data from two operational freeways in Melbourne, Australia. Consistent with the results of simulation testing, the validation confirmed that the recursive model provided a substantial improvement in travel time predictions when compared to the model currently used to provide real-time travel time information to motorists in Melbourne.  相似文献   

4.
In this paper we propose application of multiple criteria decision making to problems of a metropolitan network improvement plan. Initially, a bilevel multiple objective network design model is considered in two objectives which are minimal government budget and minimal total travel time of road users. We seek feasible improvement alternatives among those bottleneck links in an existing road network structure and travel demand. We present an effective heuristic algorithm to obtain noninferior solutions; then ELECTRE III multiple criteria decision making and group decision making are used to evaluate and to select a compromise solution among those noninferior solutions. From the design phase in multiple criteria decision making, multiple objective mathematical programming is used to formulate a continuous network design model. However, from the phase of evaluation, multiple criteria decision making to solve the discrete network design problem. The network of metropolitan Taipei is taken as an example to illustrate the operation of this model.  相似文献   

5.
In this work we consider the following hazmat transportation network design problem. A given set of hazmat shipments has to be shipped over a road transportation network in order to transport a given amount of hazardous materials from specific origin points to specific destination points, and we assume there are regional and local government authorities that want to regulate the hazmat transportations by imposing restrictions on the amount of hazmat traffic over the network links. In particular, the regional authority aims to minimize the total transport risk induced over the entire region in which the transportation network is embedded, while local authorities want the risk over their local jurisdictions to be the lowest possible, forcing the regional authority to assure also risk equity. We provide a linear bilevel programming formulation for this hazmat transportation network design problem that takes into account both total risk minimization and risk equity. We transform the bilevel model into a single-level mixed integer linear program by replacing the second level (follower) problem by its KKT conditions and by linearizing the complementary constraints, and then we solve the MIP problem with a commercial optimization solver. The optimal solution may not be stable, and we provide an approach for testing its stability and for evaluating the range of its solution values when it is not stable. Moreover, since the bilevel model is difficult to be solved optimally and its optimal solution may not be stable, we provide a heuristic algorithm for the bilevel model able to always find a stable solution. The proposed bilevel model and heuristic algorithm are experimented on real scenarios of an Italian regional network.  相似文献   

6.
This paper examines network design where OD demand is not known a priori, but is the subject of responses in household or user itinerary choices to infrastructure improvements. Using simple examples, we show that falsely assuming that household itineraries are not elastic can result in a lack in understanding of certain phenomena; e.g., increasing traffic even without increasing economic activity due to relaxing of space–time prism constraints, or worsening of utility despite infrastructure investments in cases where household objectives may conflict. An activity-based network design problem is proposed using the location routing problem (LRP) as inspiration. The bilevel formulation includes an upper level network design and shortest path problem while the lower level includes a set of disaggregate household itinerary optimization problems, posed as household activity pattern problem (HAPP) (or in the case with location choice, as generalized HAPP) models. As a bilevel problem with an NP-hard lower level problem, there is no algorithm for solving the model exactly. Simple numerical examples show optimality gaps of as much as 5% for a decomposition heuristic algorithm derived from the LRP. A large numerical case study based on Southern California data and setting suggest that even if infrastructure investments do not result in major changes in link investment decisions compared to a conventional model, the results provide much higher resolution temporal OD information to a decision maker. Whereas a conventional model would output the best set of links to invest given an assumed OD matrix, the proposed model can output the same best set of links, the same daily OD matrix, and a detailed temporal distribution of activity participation and travel from which changes in peak period OD patterns can be observed.  相似文献   

7.
We present a reformulation of the residential location submodel of the Integrated Model of Residential and Employment Location as a network equilibrium problem, thereby making travel costs by auto endogenous. The location of housing supply is examined as a welfare maximization problem for both user-optimal and system-optimal travel costs using concepts of bilevel programming. Finally, we briefly discuss how the employment submodel can be reformulated, and the entire model solved as a variational inequality problem.  相似文献   

8.
The paper presents an algorithm for matching individual vehicles measured at a freeway detector with the vehicles’ corresponding measurements taken earlier at another detector located upstream. Although this algorithm is potentially compatible with many vehicle detector technologies, the paper illustrates the method using existing dual-loop detectors to measure vehicle lengths. This detector technology has seen widespread deployment for velocity measurement. Since the detectors were not developed to measure vehicle length, these measurements can include significant errors. To overcome this problem, the algorithm exploits drivers’ tendencies to retain their positions within dense platoons. The otherwise complicated task of vehicle reidentification is carried out by matching these platoons rather than individual vehicles. Of course once a vehicle has been matched across neighboring detector stations, the difference in its arrival time at each station defines the vehicle’s travel time on the intervening segment.Findings from an application of the algorithm over a 1/3 mile long segment are presented herein and they indicate that a sufficient number of vehicles can be matched for the purpose of traffic surveillance. As such, the algorithm extracts travel time data without requiring the deployment of new detector technologies. In addition to the immediate impacts on traffic monitoring, the work provides a means to quantify the potential benefits of emerging detector technologies that promise to extract more detailed information from individual vehicles.  相似文献   

9.
The fare of a transit line is one of the important decision variables for transit network design. It has been advocated as an efficient means of coordinating the transit passenger flows and of alleviating congestion in the transit network. This paper shows how transit fare can be optimized so as to balance the passenger flow on the transit network and to reduce the overload delays of passengers at transit stops. A bi‐level programming method is developed to optimize the transit fare under line capacity constraints. The upper‐level problem seeks to minimize the total network travel time, while the lower‐level problem is a stochastic user equilibrium transit assignment model with line capacity constraints. A heuristic solution algorithm based on sensitivity analysis is proposed. Numerical example is used to illustrate the application of the proposed model and solution algorithm.  相似文献   

10.
This paper addresses the problem of dynamic travel time (DTT) forecasting within highway traffic networks using speed measurements. Definitions, computational details and properties in the construction of DTT are provided. DTT is dynamically clustered using a K-means algorithm and then information on the level and the trend of the centroid of the clusters is used to devise a predictor computationally simple to be implemented. To take into account the lack of information in the cluster assignment for the new predicted values, a weighted average fusion based on a similarity measurement is proposed to combine the predictions of each model. The algorithm is deployed in a real time application and the performance is evaluated using real traffic data from the South Ring of the Grenoble city in France.  相似文献   

11.
This research focuses on finding the best transfer schemes in metro networks. Using sample-based time-invariant link travel times to capture the uncertainty of a realistic network, a two-stage stochastic integer programming model with the minimized expected travel time and penalty value incurred by transfer activities is formulated. The first stage aims to find a sequence of potential transfer nodes (stations) that can compose a feasible path from origins to destinations in the transfer activity network, and the second stage provides the least time paths passing by the generated transfer stations in the first stage for evaluating the given transfer schemes and then outputs the best routing information. To solve our proposed model, an efficient hybrid algorithm, in which the label correcting algorithm is embedded into a branch and bound searching framework, is presented to find the optimal solutions of the considered problem. Finally, the numerical experiments are implemented in different scales of metro networks. The computational results demonstrate the effectiveness and performance of the proposed approaches even for the large-scale Beijing metro network.  相似文献   

12.
This paper formulates a network design problem (NDP) for finding the optimal public transport service frequencies and link capacity expansions in a multimodal network with consideration of impacts from adverse weather conditions. The proposed NDP aims to minimize the sum of expected total travel time, operational cost of transit services, and construction cost of link capacity expansions under an acceptable level of variance of total travel time. Auto, transit, bus, and walking modes are considered in the multimodal network model for finding the equilibrium flows and travel times. In the proposed network model, demands are assumed to follow Poisson distribution, and weather‐dependent link travel time functions are adopted. A probit‐based stochastic user equilibrium, which is based on the perceived expected travel disutility, is used to determine the multimodal route of the travelers. This model also considers the strategic behavior of the public transport travelers in choosing their routes, that is, common‐line network. Based on the stochastic multimodal model, the mean and variance of total travel time are analytical estimated for setting up the NDP. A sensitivity‐based solution algorithm is proposed for solving the NDP, and two numerical examples are adopted to demonstrate the characteristics of the proposed model. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Travel times are generally stochastic and spatially correlated in congested road networks. However, very few existing route guidance systems (RGS) can provide reliable guidance services to aid travellers planning their trips with taking account explicitly travel time reliability constraint. This study aims to develop such a RGS with particular consideration of travellers' concern on travel time reliability in congested road networks with uncertainty. In this study, the spatially dependent reliable shortest path problem (SD‐RSPP) is formulated as a multi‐criteria shortest path‐finding problem in road networks with correlated link travel times. Three effective dominance conditions are established for links with different levels of travel time correlations. An efficient algorithm is proposed to solve SD‐RSPP by adaptively using three established dominance conditions. The complexities of road networks in reality are also explicitly considered. To demonstrate the applicability of proposed algorithm, a comprehensive case study is carried out in Hong Kong. The results of case study show that the proposed solution algorithm is robust to take account of travellers' multiple routing criteria. Computational results demonstrate that the proposed solution algorithm can determine the reliable shortest path on real‐time basis for large‐scale road networks. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Traffic signal timings in a road network can not only affect total user travel time and total amount of traffic emissions in the network but also create an inequity problem in terms of the change in travel costs of users traveling between different locations. This paper proposes a multi‐objective bi‐level programming model for design of sustainable and equitable traffic signal timings for a congested signal‐controlled road network. The upper level of the proposed model is a multi‐objective programming problem with an equity constraint that maximizes the reserve capacity of the network and minimizes the total amount of traffic emissions. The lower level is a deterministic network user equilibrium problem that considers the vehicle delays at signalized intersections of the network. To solve the proposed model, an approach for normalizing incommensurable objective functions is presented, and a heuristic solution algorithm that combines a penalty function approach and a simulated annealing method is developed. Two numerical examples are presented to show the effects of reserve capacity improvement and green time proportion on network flow distribution and transportation system performance and the importance of incorporating environmental and equity objectives in the traffic signal timing problems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
This study addresses guideway network design for personal rapid transit (PRT) favoring transit-oriented development. The guideway network design problem seeks to minimize both the guideway construction cost and users’ travel time. In particular, a set of optional points, known as Steiner points, are introduced in the graph to reduce the guideway length. The model is formulated as a combined Steiner and assignment problem, and a Lagrangian relaxation based solution algorithm is developed to solve the optimal solution. Numerical studies are carried on a real-sized network, and illustrate that the proposed model and solution algorithm can solve the PRT guideway network design problem effectively.  相似文献   

16.
This paper first develops a network equilibrium model with the travel time information displayed via variable message signs (VMS). Specifically, the equilibrium considers the impact of the displayed travel time information on travelers’ route choices under the recurrent congestion, with the endogenous utilization rates of displayed information by travelers. The existence of the equilibrium is proved and an iterative solution procedure is provided. Then, we conduct the sensitivity analyses of the network equilibrium and further propose a paradox, i.e., providing travel time information via VMS to travelers may degrade the network performance under some poor designs. Therefore, we investigate the problem of designing the VMS locations and travel time display within a given budget, and formulate it as a mixed integer nonlinear program, solved by an active-set algorithm. Lastly, numerical examples are presented to offer insights on the equilibrium results and optimal designs of VMS.  相似文献   

17.
Due to additional trip production by land use development, the O‐D travel costs between some O‐D pairs may also change intuitively. This leads to positive and negative impacts on network users traveling between different O‐D pairs. Therefore the equity issue about the benefit distribution gained from the land‐use development problem is raised. This paper proposes an Equity based Land‐Use Transportation Problem (ELUTP) which is intended to examine the benefit distribution among the network users and the resulting equity associated with land‐use development problem in terms of the change of equilibrium O‐D travel cost. In the resulting bi‐level programming model, the upper level sub‐problem maximizes traffic production incorporating equity constraints, while the lower level sub‐problem is a combined trip distribution/assignment user equilibrium problem. Genetic algorithm based method is applied to test the models using an example network.  相似文献   

18.
To improve the quality of travel time information provided to motorists, there is a need to move away from point forecasts of travel time. Specifically, techniques are needed which predict the range of travel times which motorists may experience. This paper focuses on travel time prediction on motorways and evaluates three models for predicting the travel time range in real time as well as up to 1 h ahead. The first model, termed lane by lane tracing, relies on speed data from each lane to replicate the trajectories of relatively slow and relatively fast vehicles on the basis of speed differences across the lanes. The second model is based on the relationship between mean travel time (estimated using a neural network model) and driver-to-driver travel time variability. The results provide insight into the relative merits of the proposed techniques and confirm that they provide a basis for reliable travel time range prediction in the short-term prediction context (up to 1 h ahead).  相似文献   

19.
Qu Zhen  Shi Jing 《先进运输杂志》2016,50(8):1990-2014
This paper considers the train rescheduling problem with train delay in urban subway network. With the objective of minimizing the negative effect of train delay to passengers, which is quantified with a weighted combination of travel time cost and the cost of giving up the planned trips, train rescheduling model is proposed to jointly synchronize both train delay operation constraints and passenger behavior choices. Space–time network is proposed to describe passenger schedule‐based path choices and obtain the shortest travel times. Impatience time is defined to describe the intolerance of passengers to train delay. By comparing the increased travel time due to train delay with the passenger impatience time, a binary variable is defined to represent whether the passenger will give up their planned trips or not. The proposed train rescheduling model is implemented using genetic algorithm, and the model effectiveness is further examined through numerical experiments of real‐world urban subway train timetabling test. Duration effects of the train delay to the optimization results are analyzed. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
This paper proposes a bi-level programming model to solve the design problem for bus lane distribution in multi-modal transport networks. The upper level model aims at minimizing the average travel time of travelers, as well as minimizing the difference of passengers’ comfort among all the bus lines by optimizing bus frequencies. The lower level model is a multi-modal transport network equilibrium model for the joint modal split/traffic assignment problem. The column generation algorithm, the branch-and-bound algorithm and the method of successive averages are comprehensively applied in this paper for the solution of the bi-level model. A simple numerical test and an empirical test based on Dalian economic zone are employed to validate the proposed model. The results show that the bi-level model performs well with regard to the objective of reducing travel time costs for all travelers and balancing transit service level among all bus lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号