首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
南京大胜关长江大桥大跨度钢桁拱桥设计研究   总被引:4,自引:2,他引:4  
南京大胜关长江大桥是京沪高速铁路的重点工程,主桥采用三主桁空间桁架结构、Q420qE高性能结构钢、板桁组合结构与整体桥面结构、以及长吊杆抑振等关键技术.介绍南京大胜关长江大桥的建桥条件与技术标准、桥型方案比选与总体布置以及钢桁拱结构方案,重点论述所采用关键技术的研究与运用.  相似文献   

2.
安庆长江铁路大桥全长2 996.8 m,主桥为(101.5+188.5+580+217.5+159.5+116)m的钢桁梁斜拉桥。铁路等级为两线客运专线,两线Ⅰ级干线。3号、4号桥塔墩采用梅花形布置的37根φ3.0 m钻孔桩基础,按摩擦桩设计,桩长分别为108 m、110 m;1号、2号墩位于陆地上,设计为矩形空心墩,采用行列式布置的14根φ1.5 m钻孔桩基础,按摩擦桩设计,桩长分别为28 m、39 m;5~7号墩处于河道内,由于有防船撞要求设计为矩形实心墩。主桥3号和4号墩基础采用双壁钢套箱围堰施工方案,围堰采用无导向船的前后定位船锚碇系统定位。  相似文献   

3.
介绍万州长江大桥钢桁拱梁架设中墩顶布置的参数、设计特点及操作要点。  相似文献   

4.
宜昌夷陵长江大桥为三塔混凝土单索面斜拉桥。主塔顺桥向为单柱式,横桥向为倒Y形结构。主要介绍主塔结构、主塔计算分析及主塔施工。  相似文献   

5.
采用正交异性钢桥面板的铁路钢桁梁设计   总被引:4,自引:0,他引:4  
介绍了采用正交异性钢桥面板的铁路钢桁梁的结构设计,分析了钢桁梁采用这种整体桥面结构对高速行车的作用与意义,研究了采用整体桥面结构后钢桁梁的受力特性。  相似文献   

6.
新白沙沱长江大桥主桥为(81+162+432+162+81)m的五跨连续钢桁梁斜拉桥,上层布置四线客运专线,下层布置两线货运专线,是国内首座六线铁路桥。为合理选择该桥钢桁梁的横断面,从结构的空间构成、受力及经济合理性等方面,对2片主桁与3片主桁、梯形斜桁断面方案与矩形直桁断面方案进行对比分析。结果表明:大桥采用2片主桁的矩形直桁断面方案既能满足线路的布置要求,又具有结构受力合理、钢结构制造安装方便和较好的经济性等优势。因此大桥钢桁梁最终采用2片主桁的矩形直桁断面,桁宽24.5m,桁高15.2m,上层桥面为正交异性板整体结构,下层桥面为纵横梁+道砟槽板结构。  相似文献   

7.
介绍渝怀铁路长寿长江大桥设计。大桥上部结构采用下承式连续钢桁梁的双线铁路桥梁,桥梁结构用钢为14MnNbq钢、16Mnq钢;主桁采用整体节点技术;支座为铰轴滑板钢支座;钢梁使用了长效防腐涂装体系;钢梁安装采用单层吊索塔架悬拼施工,悬臂跨度长达192m;钢桁梁悬臂拼装时采用了预应力后锚技术;主墩深水基础采用双壁吊箱围堰施工。  相似文献   

8.
武汉天兴洲公铁两用长江大桥主桥钢梁设计   总被引:2,自引:2,他引:0  
徐伟 《桥梁建设》2008,(1):4-7,22
武汉天兴洲公铁两用长江大桥主桥为双塔三索面钢桁梁斜拉桥,首次采用了3片主桁、三索面的结构形式.该桥设计中研究确定了铁路多线荷载加载等新技术.介绍该桥钢梁的设计要点、结构设计及主要专题研究项目.  相似文献   

9.
韩家沱长江大桥主桥为(81+135+432+135+81)m双塔双索面钢桁梁半飘浮体系斜拉桥.主梁为平行弦钢桁梁,N形桁架,2片主桁,桁间距18m,桁高14 m,节间长13.5m,采用正交异性板整体钢结构桥面,节点为焊接整体节点结构形式.桥塔为折线H形桥塔,采用C50混凝土,最大塔高187.5 m.全桥共设56对镀锌高强钢丝斜拉索,呈平行的扇形双索面布置.在设计中通过在钢桁梁下弦杆底分段设置导流板经济有效地抑制了钢桁梁的涡激振动,研发了利用带控制开关的新型锁定装置控制列车制动力引起的结构振动、利用粘滞阻尼器控制地震响应的综合控制系统.  相似文献   

10.
安庆长江铁路大桥3号墩基础施工采用双壁钢围堰方案,围堰直径达56 m.为实现底节围堰下河,经方案比选,3号墩底节围堰高20.08 m,采用气囊法整体下河.通过在围堰内设置2道相互平行且与围堰井壁连接成整体的钢承重梁结构和底托架结构,作为气囊法整体下河上滑道.根据围堰结构并经计算,围堰滑道下方采用36只φ1.8 m×8.0 m规格的承托气囊.围堰下河场地选在下游一修船厂内,紧邻水边,尺寸约120 m×150m,入水口地面坡度为6.25%.入水口采取挖掘清淤方式形成水深3 m以上的陡坎,避免围堰入水搁浅.围堰下河后临时锚泊,以便完成落放托架和浮运编队工作.  相似文献   

11.
安庆长江铁路大桥采用双塔三索面钢桁梁斜拉桥和6孔64 m跨现浇简支箱梁布置形式,铁路4线.深水区3号、4号桥塔墩采用先围堰后平台的双壁钢围堰施工方案;5号墩桩基采用定位桩平台施工方案,承台采用双壁钢围堰施工方案.浅水区6号、7号及W01号、W02号桥墩桩基采用双栈桥加定位桩平台施工方案,承台采用钢板桩围堰施工方案.桥塔起始段采用支架法施工,其余采用大节段液压爬模施工;横梁采用支架法施工,分2层浇注.主桥无索区钢梁采用膺架法架设,桥塔墩有索区钢梁采用架梁吊机对称伸臂架设;在3号墩设置桁内开启式提升站取梁;全桥设2个合龙口,先中跨、后边跨合龙.非通航孔桥64 m箱梁采用支架法现浇施工.水中墩平台、围堰及栈桥考虑不同设防水位.该桥已于2012年12月实现多点精确合龙.  相似文献   

12.
安庆长江铁路大桥主桥为主跨580 m的空间三索面钢桁梁斜拉桥,主梁采用3片主桁的钢桁架结构,桥塔为钢筋混凝土结构,高210 m.根据该桥非对称三主桁、超高塔、三索面的特点,钢桁梁采用散拼法架设,无索区6号至7号墩间钢桁梁在膺架上拼装架设,6号至5号墩间钢桁梁采用悬臂架设,有索区钢桁梁除墩顶4个节间采用浮吊散拼架设外,其余均采用悬臂架设;全桥设2个合龙口,采用“长圆孔十圆孔”合龙铰技术,先中跨后边跨合龙.桥塔中、上塔柱采用爬模施工,采取塔梁同步施工技术,索道管分两阶段(在地面平台上将索道管与劲性骨架组装、初调,在塔上微调)进行精确定位.该桥已于2012年12月12日成功实现了全桥钢桁梁多点精确合龙.  相似文献   

13.
安庆长江铁路大桥主桥桥塔施工关键技术   总被引:1,自引:0,他引:1  
安庆长江铁路大桥主桥为双塔三索面钢桁梁斜拉桥,桥塔为上倒Y形、下钻石形混凝土结构,高210m.根据该桥塔超高、截面大且设置双层主筋的特点,塔座及下塔柱底节8.5m采用现浇模板支架法施工,其余均采用6 m节段液压爬模施工;横梁采用钢管柱支架法、分2层与塔柱结合段同步施工;上塔柱节段采取塔梁同步技术施工.施工时,在塔柱内设置劲性骨架,改进液压爬模系统,在中塔柱两塔肢间设4道钢管横撑;合理配置机械设备,采取大体积混凝土施工工艺控制技术;并采取桥塔线形测量控制等措施确保了施工安全和质量.该桥塔已于2012年9月14日施工完成.  相似文献   

14.
泸州长江铁路大桥总体设计   总被引:1,自引:0,他引:1  
泸州长江铁路大桥为单线铁路桥,主桥为五跨一联的预应力混凝土连续刚构,温度力是设计控制因素,桥墩采用有所创新的墩中剖缝的结构,解决了设计计算的难题。主要介绍大桥的总体设计特点。  相似文献   

15.
安庆长江铁路大桥主桥为主跨580 m的六跨连续钢桁梁斜拉桥,桥面系采用正交异性钢桥面系。为验证该桥整体桥面系结构受力是否合理以及能否有效参与主桁结构的共同受力,采用有限元分析程序ANSYS分别建立3号桥塔支座附近E17~E23六个节间和中跨跨中E37~E43六个节间的钢桁梁节段模型,对桥面系中纵梁、横梁及横肋、桥面顶板的应力进行分析。分析结果表明:在设计荷载作用下,桥面系中纵梁、横梁、桥面顶板的应力水平均满足规范要求;桥面系受力横向分配比较均匀,结构整体刚度好;同一主桁断面处桥面顶板和纵梁的纵向应力分布较均匀,桥面系结构能有效参与主桁共同受力。  相似文献   

16.
范学梅  农代培 《桥梁建设》2013,43(1):104-109
安庆长江铁路大桥主桥采用双塔多跨连续钢桁梁斜拉桥.该桥3号、4号主墩基础采用双壁钢围堰施工,围堰采用无导向船的重锚锚锭系统定位.针对围堰接高过程中出现的部分边锚失效和大直径锚绳收放困难的问题进行原因分析及边锚改进.经分析,出现上述问题的主要原因为原边锚导缆器式马口设计存在缺陷(只能在锚绳共面情况下工作,在竖向外力作用下马口竖轴极难转动),为此将原导缆器式马口更换为辊轴式马口,原围堰顶固定滑移式转向马口增设转轮装置,消除了边锚崩断失效安全隐患,解决了大直径锚绳难以收放的难题.  相似文献   

17.
安庆长江铁路大桥4号桥塔墩采用钻孔桩承台基础,37根变直径桩,桩长110 m,嵌入泥岩96.5 m;承台直径51m,厚8m,埋置在河床覆盖层中.根据该墩大直径、超深、嵌泥岩钻孔桩的特点,基础采用先围堰(直径56 m)后平台方案施工,先封底后钻孔.底节围堰采用无内支撑整体起吊下河,其余3节围堰在墩位处散拼接高,围堰采用无导向船的前、后定位船重锚锚锭定位方法定位、注水压重及吸泥机吸泥的方法下沉,并采取分区封底;钻孔桩采取清水钻孔工艺成孔;承台采取分次浇筑方法施工.实践证明该桥4号墩基础施工技术是可行的,围堰下沉姿态良好,封底成功,且经检测桩基均为Ⅰ类桩.  相似文献   

18.
安庆长江铁路大桥3号桥塔墩钻孔桩基础采用圆形双壁钢套箱围堰施工.为实现围堰的精确定位和施工安全,经方案比较采用无导向船的前、后定位船锚碇系统定位方案,锚型与数量、锚绳及定位船通过计算围堰下沉到位后主锚总拉力及各锚碇受力确定.设计中通过在围堰侧面的边锚拉结点及围堰顶面设置单向或多向转动的辊轴式马口解决大直径锚绳转向和收放难题;通过在前、后定位船和围堰顶的收锚平台上安装卷扬机进行绞锚实现边锚收放或换锚.岸上边锚、地锚均挖坑埋设;水中锚碇采用240 t抛锚船抛设完成,根据围堰下沉进展及时进行锚绳系解、收紧、过锚,完成锚碇系统施工.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号