首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《汽车工程》2021,43(8)
为研究电池热失控传播过程中的热量传递路线,建立了由一维电化学模型、内短路模型、三维传热模型和副反应模型相耦合而形成的电池组热失控模型,并用针刺实验进行了验证;提出了一种基于相变材料和液体冷却的电池模组热管理方案,并分析了它对电池模组热失控传播的抑制作用。结果表明:所提出的电池热管理方案可使电池模组各个电池发生热失控的时间间隔延长,各电池温度下降的速度加快,能很好地起到抑制电池模组热失控传播的作用。  相似文献   

2.
电动汽车用动力电池系统单一电芯热失控后经扩展导致燃烧是电动汽车灾害事故的主要发展链条之一,为进一步厘清锂离子电池热激源下的灾害表现行为,本文采用加热板直接加热的方式开展了热传导作用下方壳磷酸铁锂电池单体和模组的热失控实验研究,并采集和分析了热失控过程中的电池温度、电压及火灾动力学参数。实验结果表明,LFP单体在热传导作用下的热失控会产生大量白烟,但无明火出现,电芯防爆阀开启温度为250℃,热失控温度280℃,热失控最高温度600℃,LFP单体热失控存在电芯内部的热蔓延特征,热失控内传递时间约为1.5 min;LFP电池模组燃烧呈间歇喷射特征,且火焰传播速度逐步加快,模组最大热释放速率为260 kW,最大烟气生长速率为1.4 m2/s。LFP电池模组着火的点火能主要来自外部电压采样线因高热导致绝缘层失效后短路产生的电火花,且电芯连续热失控更易引发采样线短路,在动力电池系统设计时应尤其注意电压采集线路布置位置、绝缘层失效温度等关键参数。  相似文献   

3.
电池系统热失控扩散仿真是电池系统研发过程中的重要环节,其结果能够为电池系统安全设计优化提供指导建议。因此,在满足系统模型精度的前提下,为大幅提高研发效率,非常有必要对热失控扩散的数学模型进行合理简化。本文采用“单体-模组”的研究思路,基于传统热失控试验和数值模拟的结果,构建了以归一性生热方程为核心的简化电池模组热失控扩散模型,研究模型准确性及计算效率。结果表明:简化模型的计算时间为37 min,而相同条件下传统模型的计算时间为90 min左右,在模型精度达到90%的前提下,计算时间缩短了约2/3,显著降低了计算成本。本文的研究对电池包级别的热扩散高效快速仿真提供技术参考。  相似文献   

4.
针对锂离子动力电池在不同条件下电池模组温度变化及热失控传播特性不明晰的问题,提出了基于不同填充材料的电池热管理模拟方案。利用COMSOL Multiphysics软件,以18650电池为研究对象,建立锂离子电池模组热电耦合模型,分析不同填充材料下充放电倍率、液冷流量、液冷管排数对正常电池模组温度的影响;探究不同填充材料对电池模组热失控传播的影响;结合电池热失控试验数据验证模型准确性。结果表明,填充材料和管排数对电池正常模组温度影响较大;填充材料为石墨时最佳液冷管排数为8根;PCM材料能将对热失控传播时间控制在40~50 s/颗,相比于石墨具备明显优势。  相似文献   

5.
本文以60Ah的NCM811软包锂离子电池为研究对象,采用数值模拟的方法研究了加热条件下锂离子电池的热失控行为.基于锂离子电池热失控的副反应机理以及热传导理论,建立单体电池绝热热失控模型,模型误差小于2%.设计相关试验测试单体电池热失控过程中的产气特性,以单体电池绝热热失控模型为基础,建立外部加热条件下的热失控模型,模...  相似文献   

6.
锂离子动力电池系统热失控扩展是造成电动汽车火灾事故的主要原因之一,文章以由圆柱形锂离子电池构成的动力电池系统为试验对象,采用加热触发单个电芯热失控的方式,通过采集电芯和模组的电压、温度等特征参数,对电芯热失控及在模组和系统范围内热扩展特性进行分析与研究。试验结果表明,电芯热失控诱发热扩展过程较为短暂,约5 s引发第二节电芯热失控;热失控发生前,触发电芯的负极采样温度高于正极,且负极温变速率平稳;热失控发生后,受正极喷射火焰影响,与之直接串接模组存在更高风险,在热扩展中受影响最大。  相似文献   

7.
卢晓 《上海汽车》2024,(2):32-38
围绕常规预防和应急管控两个维度,建立动力电池热安全虚拟评估方法。常规预防从电热水冷入手,通过CFD流场分析,优化电池包冷却系统性能,通过流固气多物理场耦合分析,对电池包进行温度场分析。针对电池包的使用工况,研究电池包内温度积聚和热量传递,优化电池包热管理控制策略,提升电池整包性能。应急管控基于能量流理念,关注热失控后电池包内的热量传递路径,实现电池热扩散虚拟分析,评估热扩散安全策略的有效性,优化热失控阻隔方案;评估热失控后系统的功能安全,提升电池包热扩散安全性。  相似文献   

8.
热失控安全是当下高比能电池及长里程电动汽车产业化必须解决的核心命题。历经十年,江淮汽车基于小容量圆形电芯,研究了热失控发生机理,从电池系统安全设计与验证角度论述热失控防护方案与五层次验证方案,目标实现一颗电芯定向爆喷,模组不发生热扩散,电池包及整车不失火,形成了简称“蜂窝电池”的系统解决方案。基于加热法开展的大量热失控试验验证和市场应用的车辆安全大数据案例分析,实证了“蜂窝电池”热失控防护技术的有效性。  相似文献   

9.
为确保电池单体内短路后无热失控,通过模组试验方法开发逐步实现接近真实状态下的密闭环境热失稳安全性。通过采取加热丝缠绕在某一单体电池加热方式使电池温度上升,加热丝两端分别通过导线与外接电源正负极相连,中间通过开关控制闭合。该单体布置于模块中间位置,周围相邻六只单体分别布置温感,模组装配焊接。闭合继电器加热电池单体,温感连接至多路温度巡检仪监控试验过程中监控温度变化,当加热至电池单体发生失效后断开加热回路,持续观察电池温度变化及周围相邻电池是否发生失效等反应。  相似文献   

10.
为揭示锂电池内短路引发热失控的热响应和电行为特征,对单体磷酸铁锂电池及其并联连接电池模组进行针刺试验,观测被刺电池端电压、表面温度、反充电流的变化规律和试验特征,并利用电池单个电极针刺内短路模型以及等效内外短路电路模型解释电池内外短路电阻、端电压和反充电流间的相互关系。研究表明:被刺电池端电压出现突降-上升的主要原因是受随机性接触界面、高温等因素影响的内短路阻值的突降和升高;若电池正极柱处温度急剧升高,反充电流瞬间达到峰值,则表明电池发生外短路;电池是否出现热失控取决于电池内短路阻值和反充电流。  相似文献   

11.
葛瑞 《上海汽车》2021,(3):4-6,13
电动汽车频繁发生的起火爆炸现象一般是由锂电池系统内部的热失控现象导致的,其危害较为严重,应当引起汽车电池制造商的高度重视.安装防爆阀是一项行之有效的抑制热失控和热扩散现象的被动防御措施.防爆阀的核心作用是在电池系统内部发生热失控后能快速地将电池包内部的有毒可燃气体排到外部环境中,降低电池包内部的压力,从而防止电池包爆破...  相似文献   

12.
为提高动力电池的安全性,降低热失控的风险,以某款标称容量为166Ah的大容量锂电池模组作为研究对象,在常温25℃试验环境下,利用充放电测试系统以1/5C恒流对电池模组进行过充电热失控试验,研究其过充电热失控的反应特点和行为特性。结果表明:在常温25℃试验环境下,该电池模组充电至154%SOC,发生热失控行为。过充热失控反应存在明显的演变过程,热失控发生前电芯一致性变差,内部电压的下降时间超前于模组的热失控异常升温时间,对热失控进行预警。  相似文献   

13.
针对纯电动汽车动力电池单体间以及电池模组间的均衡速率和均衡效率问题,设计电池单体串联和电池模组串联电路来研究电池单体间和电池模组间充放电时的均衡速率和均衡效率,电池单体间采用电感式和多模块变压器式的主动均衡方式,电池模组间采用多模块变压器主动均衡方式。在MATLAB/Simulink软件环境下分别搭建相应的仿真模型,以电池荷电状态(SOC)为均衡控制变量,采用“均值-差值”控制策略进行仿真实验。仿真结果表明,串联电池单体采用多模块变压器均衡时间是电感式均衡时间的3倍;电池组间均衡时底层单体电池SOC通过电感式均衡快速保持一致,顶层电池模组通过变压器同时充放电,使得电池组SOC保持一致。将单体均衡采用电感式,模组采用多模块变压器式均衡应用于车载多电池箱均衡中有助于提升均衡速率和均衡效率。  相似文献   

14.
实验研究了辐射加热器非接触式触发动力锂离子电池热失效过程中的温度特性、质量损失、产热行为变化等特性及其空间射流温度与热流分布特性。以50 Ah的Li(Ni0.6Co0.2Mn0.2) O2电池为对象,基于锂离子电池燃烧实验平台进行。结果表明:电池热失控实验过程中发生了2次喷发现象,电池表面最高温度为489.2℃;最高温升速率为27.7 K·s-1;最大质量损失速率为32.7 g·s-1;电池本体总产热量为1.05 MJ;环境最高温度为705.3℃;烟气总释放热为6.56 MJ·m-2;射流空间环境最高温度比电池表面最高温度高。这表明,高温高速的易燃气体会加剧热失控危害的风险。本结果有助于电池失效初期预警、热失控抑制、火灾风险控制。  相似文献   

15.
某车型电池包箱体空间较小,电池单体的散热效果受结构限制,在极端工况下极易产生电芯高温热失控问题进而影响行车安全。因此在该电池包设计过程中,电芯堆叠热设计就显得极为关键,文章采用Matlab仿真程序,基于戴维南单体电池模型和HPPC测试,完成了某新能源汽车电池包热生热量仿真分析,对比了25℃与40℃环境温度下电池单体在不同工况下的生热性能,为三维电池包热仿真提供必要的输入条件。  相似文献   

16.
动力电池热失控是电动汽车安全事故的致命隐患,为了减少电池热失控而引发的一系列电动汽车自燃事故,文章对电动汽车自燃和电池热失控的机理进行分析,从电池包防火能力、电池热失控预警系统、整车非金属阻燃性能几个方面,来提升电动汽车的整车防火安全能力,并对电动汽车的防火安全提出了合理化建议。  相似文献   

17.
<正>锂离子电池包热管理的要求是根据锂离子电池发热机理,合理设计电池包结构,选择合适的热管理方式,合理设计热管理策略,保证电池包内各个单体电池工作在合理温度范围内的同时尽量维持包内各个电池及电池模块间的温度均匀性。  相似文献   

18.
随着新能源汽车的快速发展和普及推广,锂离子动力电池的安全性问题日益突出。文章基于电池系统国标检测项目和典型汽车碰撞工况,设计了锂离子电池模组在不同加载速度和不同方向下的挤压试验,分析了锂离子电池模组的复杂力-电特性和失效行为。结果表明:电池模组在低速和高速挤压试验过程中均出现内短路和热失控现象,高SOC电池模组相比于低SOC模组在发生热失控后更容易起火燃烧。高速冲击工况下电池模组发生内短路时的侵入量比低速工况时小,说明电池模组的损伤容限随着加载速度的提高而降低。电池模组在碰撞工况下的力学特性及安全性具有典型的方向性。电池模组X方向的抗冲击能力相比Y向和Z向更强,但因电池单体堆叠热量积聚使得模组热失控更严重。研究结果为模组耐撞性能提升和整车电池碰撞防护设计提供了重要参考依据。  相似文献   

19.
为提升动力电池热管理系统的传热效果,研发了新型液冷动力电池模组。基于单体电池的最大发热功率测试结果,建立了新型液冷动力电池模组的冷却/加热系统试验平台,该平台由供液系统、冷却系统、加热系统、信号测量(传感器)与数据处理系统和电池管理系统等组成,可进行液冷动力电池模组传热特性的试验,为后续电池热管理系统的研发提供理论依据和技术支撑。  相似文献   

20.
目前新能源电动汽车日益发展,电池包低压线束作为电动汽车电池包内核心零部件之一,通过线束连接器,采集各模组的电压和温度等信息,通过BMS与整车进行信息交互。模组连接器承载着线束与模组连接的可靠性能。本文针对几款低压线束模组连接器的应用案例及失效后果,分析探讨了电池包模组连接器选型或设计时应注意的问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号