首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
李荣智  陈馈 《隧道建设》2003,23(5):18-22
通过南京地铁许府巷站~南京站区间盾构隧道的施工,比较详尽地介绍了土压平衡盾构机的始发与到达掘进技术、曲线掘进技术及盾构机通过古城墙和玄武湖时所采取的技术措施。  相似文献   

2.
冻结技术在地铁联络通道施工中的应用   总被引:4,自引:0,他引:4       下载免费PDF全文
刘典基 《隧道建设》2004,24(2):32-35
对南京地铁南北线一期工程玄武门站~许府巷站区间联络通道施工中,采用的冻结法施工的原理、冻结参数选取、施工工艺、冻结法施工对环境的影响及预防措施等进行了介绍。  相似文献   

3.
浅析地铁盾构隧道的施工测量   总被引:1,自引:0,他引:1  
吕宏权 《隧道建设》2005,25(5):65-67,75
以南京地铁南北线一期工程许府巷-玄武门区间隧道的盾构施工为例,介绍了地铁盾构隧道的施工测量的特点以及测量的内容及方法。  相似文献   

4.
地下连续墙钢筋笼、接头桩吊装技术   总被引:1,自引:0,他引:1       下载免费PDF全文
结合南京地铁许府巷、玄武门车站地下连续墙施工,介绍在保证吊装长大钢筋笼和接头桩的安全性、可靠性、使被吊物体不发生弹性变形和降低抗弯强度的情况下,选择起重设备、确定吊点位置、配备吊具,并介绍接头桩、钢筋笼的吊装过程及注意事项。  相似文献   

5.
《公路》2018,(12)
以成都地铁7号线狮子山站~四川师大站区间隧道土压平衡式盾构施工为依托,采用数值模拟方法对管片进行离散化处理,分析了地下水浮力大小、注浆体弹性模量、注浆压力大小对管片上浮的影响。研究结果表明,管片上浮主要发生在浆液还未硬化之前,随着相对水位的加大,上浮量呈现出减小趋势;注浆压力的变化带来的影响体现在两个方面,一个是管片上的合力大小和方向都受到注浆压力分布模式及大小的影响;注浆压力对管片上浮的另一个影响是通过改变隧道周围土体来实现的。管片位移越大,注浆体的弹性约束作用就越明显,因此注浆体的强度值对管片上浮的影响程度会随着作用在管片上的上浮力的改变而产生差异。  相似文献   

6.
宗言海 《隧道建设》2009,(Z1):15-18
盾构作为地铁隧道施工的主要设备与作为地铁隧道永久衬砌的管片应用均非常广泛,因此管片选型的好坏直接影响到地铁隧道的精度和质量。根据常用管片的特点,着重介绍现今应用比较普遍的等腰梯形转弯环管片的楔形量计算、管片排版计算及盾构管片选型依据,并计算出常用管片的最大转弯半径,对管片造型与组织管片生产具有一定的指导作用。  相似文献   

7.
为了充分掌握地铁盾构隧道近距离下穿既有隧道时管片、岩土体的变形,以深圳地铁9号线梅村站-上梅林站区间下穿既有4号线莲花北站-上梅林站区间工程为背景,运用Midas GTS有限元软件对下穿施工过程进行数值模拟,分析下穿时岩土体与既有线隧道管片的变形,对两条线设计竖向距离的安全性进行了验证,得出两隧道竖向最小距离在2.0~2.5 m范围是安全的。同时提出一些技术措施,如对既有隧道进行自动化监测,从既有隧道内注浆,信息化施工等。  相似文献   

8.
地铁施工中盾构的大规模应用对地铁管片质量提出了高规格的要求.作为盾构施工中重要的水泥预制品,管片承担着隧洞结构安全和防水的重要功能,直接影响地铁使用的耐久性.该文结合深圳地铁2号线管片生产的实际经验,简要介绍了管片生产质量的控制要点.  相似文献   

9.
<正>2019年8月6日,上海轨道交通18号线沈梅路站至工作井区间入场线贯通,标志着我国轨道交通建设领域正式采用"新型地铁盾构隧道管片拼装连接"技术。在城市轨道交通建设中,隧道管片拼装环节对工程质量及后续运营影响重大。目前,我国轨道交通盾构隧道施工普遍采用螺栓拼装方式,密闭性、牢固性均有待提高。为提升工程质量,上海申通地铁集团2017年携手中铁一局、上海市隧道工程轨道交通设计院、同济大学等,共同研发"新型地铁盾构隧道管片拼装连接"技术  相似文献   

10.
刘欣  刘鑫  柳宪东 《隧道建设》2018,38(5):805-808
为提高盾构隧道掘进的施工效率、降低盾构管片排版错误的风险,针对管片类型为标准环+转弯环(为双面楔形)组合的盾构隧道,提出一种错缝拼装形式的管片预排版方法,并采用几何迭代法求出与目标线路偏差最小的一种盾构管片拼装姿势,可有效解决盾构隧道掘进过程中管片类型选择和拼装点位选取的施工难题。最后以南京地铁3号线某区间为例验证所采取方法的正确性,对盾构隧道掘进的施工组织和施工误差控制具有重要的指导意义。  相似文献   

11.
<正>2014年7月1日,由铁四院总体设计的南京地铁10号线通车运营。这是南京第一条过江地铁,也是国内首条穿越长江的单洞双线大盾构隧道地铁线,历经4年建设后通车,迎接在南京举行的第二届青奥会。由十三、十四、二十三局集团等单位承建的南京地铁10号线在江心洲站—滨江大道站区间穿越长江,长约4.2 km,是国内最  相似文献   

12.
李俊 《路基工程》2020,(6):77-85
根据南京地铁某软土地层地铁车站盾构接收井混凝土套箱发生突涌水险情的现场调查资料,分析了险情事件发生的原因,采用了套箱加固、地面注浆、环境监控、洞内注浆、管片加固等综合治理措施,解决了盾构接收井混凝土套箱突涌水险情,取得了良好的治理效果。  相似文献   

13.
城市地铁软流塑地层浅埋暗挖隧道施工技术   总被引:2,自引:1,他引:1       下载免费PDF全文
黎庆 《隧道建设》2004,24(3):50-53
介绍了南京地铁一号线珠江路站~鼓楼站~玄武门站区间中两段隧道穿过软~流塑状粉质粘土地层。覆土较薄,且地面有建筑物,地下有管线,施工须保证各构筑物安全和结构本身的稳定。结合工程类比、理论计算分析等方法,确定了合理的施工方案和施工工法。  相似文献   

14.
针对上海轨道交通18号线丹阳路站~昌邑路站区间隧道在承压含水地层中盾构掘进出现的管片上浮,造成管片碎裂、管片渗漏等问题的原因进行了分析,提出了解决上述问题的技术措施和方法,可以为在承压含水地层中盾构掘进提供一定的借鉴和经验.  相似文献   

15.
建筑物下大跨度浅埋地铁隧道施工技术   总被引:1,自引:1,他引:0       下载免费PDF全文
张先锋 《隧道建设》2003,23(3):32-34,39
南京地铁一期工程鼓楼站~玄武门站区间停车线隧道,埋深浅,围岩差,隧道断面大,且隧道穿过的地表有楼群建筑物。针对上述特点,提出了相应的浅埋暗挖工法,并采用有限元进行模拟分析,为设计、施工提供参考。  相似文献   

16.
《驾驶园》2020,(5)
正"欣悉贵公司承建的南京地铁9号线一期工程02标三工区项目部驻地于2020年3月28日完成建设,成为全线首家完成驻地标准化建设任务的标段,在此向贵公司表示衷心的祝贺!"这是近日,南京地铁建设公司给中铁十一局发来的贺电。中铁十一局四公司南京地铁9号线项目主要担负江苏省南京市水西门大街站、清河路站、汉中门大街站(不含)至水西门大街站区间、水西门大街站至清河路站区间"两站两区间"施工任务,于1月18日在全线率先进场。受新冠肺炎疫情影响,项目部建家安家、前期施工都有所滞后,但全体职工却用实际行动深刻诠释了中国铁建"召之即来、来之  相似文献   

17.
根据上中路越江隧道用14.87m盾构的特点,对比了超大直径盾构和地铁盾构管片运输特点,说明地铁盾构的管片运输方法已不能适用于大直径盾构管片运输,然后详细分析了14.87m盾构的管片储运机的结构及工作原理,对我国大直径盾构的国产化具有一定的借鉴意义。  相似文献   

18.
赵太东 《隧道建设》2013,33(3):237-241
为了降低在地铁保护区内施工对既有地铁的影响,确保地铁的正常运营,结合南京地铁中胜站-元通站区间运营地铁隧道监测实例,阐述了在地铁保护区内南京明基医院基坑开挖时,在隧道内布置沉降监测点,组建自动化监测系统,确定监测基准点及报警值,采用电水平尺实时自动监测和分析沉降曲线,并定期与人工监测数据进行比较。实践证明,电水平尺自动化监测系统能够自动记录监测过程,节约大量的人力、物力和财力,并能保证人员的安全。  相似文献   

19.
为定量评价分析盾构隧道管片的上浮风险并进行针对性的风险管控,以武汉地铁8号线黄浦路站-徐家棚站盾构区间段为 背景,构建隧道管片上浮风险评价指标体系和评价标准,建立基于云模型与D-S证据理论的盾构施工隧道管片上浮风险评价模型。 依据工程施工实测数据,对监测区段的上浮风险等级隶属度进行计算,经归一化形成证据并进行D-S证据融合; 基于条件化线性 组合规则,将历史证据与当前时刻证据进行证据更新,得出当前时刻该监测区间上浮风险的安全风险等级为较安全状态,最后针对 安全等级不高的材料因素给出相应的处理措施,为施工阶段隧道管片上浮风险评价与管理提供一种新的思路和方法。  相似文献   

20.
通用环管片通过有序旋转拼装形成地铁盾构隧道,而管片楔形量的变化将影响通用环管片线路拟合及施工纠偏的能力。为明确地铁盾构通用环管片楔形量的计算方法,对计算管片楔形量的类似通缝、紧邻交错、非对称间隔交错和对称间隔交错4种计算方法进行详细介绍与比较,然后结合天津市滨海新区轨道交通Z2线工程,系统分析几种楔形量计算方法的线路高程拟合情况和不同楔形量通用管片对整个典型区间的拟合情况,最后提出地铁盾构通用环管片楔形量的多层次控制设计流程。研究结果表明: 对称间隔交错计算方法更适用于初步计算通用环管片楔形量,并且将最小曲线半径折减50~100 m能够更快地确定初步设计的楔形量,同时有必要对管片进行设计排版来验证计算得到的管片楔形量是否满足控制要求,并且在验算时线路高程拟合偏差是一项重要的控制因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号