首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
建筑节能的发展和新型保温材料的使用中,合理的设计墙体及屋顶保温层的厚度,日益成为目前建筑节能的重要问题.将高寒地区平屋顶保温层厚度设计问题抽象为热传导方程几何边界反问题,通过不断地数值模拟,分析比较结果,得出保温层(文中为加气混凝土层)厚度为250 mm~300 mm时,屋顶内表面的温度变化值落在16℃~24℃之间,此时的保温层厚度为所求得最佳保温层厚度.  相似文献   

2.
为进一步探究寒区隧道温度场的分布规律和保温层敷设厚度问题,以金家庄特长螺旋隧道为依托,通过现场实测、理论分析和数值模拟相结合的方法,建立隧道围岩区的随机裂隙模型,研究水分迁移和相变对温度场和保温层设计厚度的影响。研究结果表明:(1)水分迁移和相变作用使得拱顶二维截线A的负温区和衬砌与围岩接触面处的温度增大,并减小围岩的冻结深度和保温层的设计厚度;(2)随机裂隙和渗流作用导致围岩与衬砌结构接触面的温度分布不具对称性,但总体表现为由拱顶至仰拱逐渐增大的趋势;(3)保温层设计厚度与孔隙率之间的关系可用ExpDec1模型表现,解析解的保温层厚度较数值模拟大,但均小于实际工程的设计厚度。研究结果可为寒区隧道的温度场和保温层设计研究提供借鉴参考。  相似文献   

3.
在建立隔热层/衬砌/围岩的二维传热学分析模型基础上,基于二维稳态导热有限元分析方法对隧道围岩、衬砌温度场分布进行模拟仿真计算。首先,对地域环境年平均气温-3.5℃条件下,不同设计厚度的热固性隔热料福利凯(FLOLIC FOAM)的防冻保温效果进行了分析;其次,对防冻保温层设计厚度为5 cm且隧道环境温度由-3.5℃下降至-10℃时,单位厚度隔热层防冻保温导致的温差变化及其产生的隔热效果进行了对比;第三,当隧道环境气温从-3.5~-35℃范围变化且隔热层厚度为5 cm时,给出了可达到的防冻保温最低温度范围。  相似文献   

4.
为了获取保温罐车的最佳保温性能,以保温罐车为研究对象,建立了符合其实际运行工况的三维数值计算模型.运用SIMPLE算法和VOF模型,对保温罐体内部溶液温度的传热状况进行仿真分析.罐体外壁保温层的总厚度不变,保温材料为聚氨酯和岩棉,通过改变聚氨酯和岩棉各自的厚度,来对比分析当保温材料厚度组合不同时,保温罐车在24 h运行过程中,罐体内部溶液的温度变化规律及其分布.计算结果表明:当采用20 mm厚度的聚氨酯和50 mm厚度的岩棉作为罐体保温层时,罐体的保温效果最好.计算结果与实验测得数据吻合,计算方法真实可靠.  相似文献   

5.
隧道洞口段铺设保温层不能完全解决寒区隧道的冻害问题,为此提出一种新型寒区隧道空气幕保温系统,采用叠加原理、分离变量法和贝塞尔特征函数建立列车风影响下寒区隧道温度场计算模型,研究不同列车运行速度和运行间隔时寒区隧道温度场的分布规律,验证了新型寒区隧道空气幕保温系统保温效果. 研究结果表明:当外界气温为 ?30 ℃,围岩地温为5 ℃时,隧道洞口段铺设保温层已无法满足寒区隧道保温需求,应与主动保温措施联合;寒区长大隧道结构防寒不应仅在洞口段,若列车运行速度大(大于200 km/h)、列车运行频率高(间隔小于30 min),寒区长大隧道需要全隧道防寒;50 m的保温空气幕联合1 050 m的保温层可以满足外界气温为 ?30 ℃、围岩地温为5 ℃、列车运行速度为300 km/h、列车运行间隔为10 min这种极端情况下寒区隧道的保温需求.   相似文献   

6.
针对寒区隧道的冻害问题,对隧道的温度场以及保温层对隧道的防冻效果进行了一维数值模拟。所得数值模拟结果表明隧道温度场的变化在贯通后约3个月趋于稳定并随隧道大气温度规律变化,隧道温度场变化与大气温度变化相比表现出明显的滞后性;隧道设置厚度不小于2 cm的保温层,防冻效果良好。  相似文献   

7.
建立考虑不同保温层厚度的FS复合保温外模板在火灾工况下的有限元模型,并对有限元模型的温度场分布进行研究。研究结果表明,FS复合保温外模板在加强肋处温度应力集中,形成薄弱区。保温过渡层有效的提高了保温隔热作用。在相同火灾工况下,保温层厚度越小,FS外模板温度上升趋势越快。  相似文献   

8.
对于寒区隧道,以往的研究中,一般将寒区非冻土段洞内年最低气温为0℃的断面处作为保温层铺设的终点。依托青海知亥代公路隧道,借助ANSYS有限元计算软件,采用直接耦合法,对知亥代隧道非冻土段保温层铺设长度进行优化。结果表明:知亥代隧道保温层铺设长度为600 m更加合适,而非将保温层铺设到年最低气温为0℃的距洞口650 m处。根据隧道衬砌所受冻融循环作用影响的特点,总结了冻融循环条件下寒区隧道衬砌抗冻防冻措施。对于寒区隧道,可采取提高混凝土抗冻性能、设置防寒保温门和安装防雪棚等方式改善衬砌受到的冻融循环作用。对于知亥代隧道而言,将混凝土抗冻等级提高到F800,可使运营期100年间衬砌结构安全系数不减小。  相似文献   

9.
利用直接冶金结合方法,研究了铝及铝合金覆板的厚度及复合温度与时间对闭孔泡沫铝夹心三明治与覆板结合层厚度的影响.利用金相显微镜观察了泡沫铝夹心与覆板结合界面的微观组织,并测量了结合界面的扩散层厚度和显微硬度.研究结果表明,铝熔体与纯铝和铝合金覆板复合温度越高,复合时间越长,他们之间的扩散层厚度越大;当纯铝板的预热温度为400~450℃,复合速度为53.9~74.4 mm/min时,泡沫铝夹芯与纯铝板形成良好冶金结合,复合界面的互扩散层厚度为39~44μm;当铝合金覆板的预热温度为240℃,复合速度为58.3 mm/min时,制备铝合金覆板泡沫铝三明治所需的铝合金板最小厚度应为7.9 mm.  相似文献   

10.
闭孔泡沫铝与铝及铝合金覆板的冶金结合   总被引:1,自引:0,他引:1  
利用直接冶金结合方法,研究了铝及铝合金覆板的厚度及复合温度与时间对闭孔泡沫铝夹心三明治与覆板结合层厚度的影响.利用金相显微镜观察了泡沫铝夹心与覆板结合界面的微观组织,并测量了结合界面的扩散层厚度和显微硬度.研究结果表明,铝熔体与纯铝和铝合金覆板复合温度越高,复合时间越长,他们之间的扩散层厚度越大;当纯铝板的预热温度为400~450℃,复合速度为53.9~74.4 mm/min时,泡沫铝夹芯与纯铝板形成良好冶金结合,复合界面的互扩散层厚度为39~44μm;当铝合金覆板的预热温度为240℃,复合速度为58.3 mm/min时,制备铝合金覆板泡沫铝三明治所需的铝合金板最小厚度应为7.9mm.  相似文献   

11.
在内陆地区借助专用装具模拟海上浮动目标进行射击训练,从而有效地提高现役部队官兵和预备役指战员的实战技能。浮动靶标的研发成功地实现了这一预想。  相似文献   

12.
结合山区地形,按照"以人为本"和"安全、环保、舒适、和谐"的新理念,对典型路段的路线方案进行优化设计、比选分析,最终选择最佳路线方案。  相似文献   

13.
具体介绍了掺加硫酸钠的几种半刚性基层材料的选择和试件成型的方法,以及室内无侧限抗压强度试验的方法和步骤,得出了在最佳含水量下的几种含硫酸盐的半刚性基层材料无侧限抗压强度的回归方程。从试验结果可以得出掺加硫酸钠能显著增强半刚性基层材料的无侧限抗压强度,且含盐量不宜过大;在硫酸盐渍土中,在一定温度条件下,石灰含量、粉煤灰含量、初始干密度、冻融循环次数、含盐量等会对无侧限抗压强度的大小产生影响。  相似文献   

14.
王繁高速公路太安岭隧道涌水量预测与评价   总被引:1,自引:1,他引:0  
以太安岭隧道为例,利用地下水动力学方法对隧道开挖的涌水量进行了预测,预测结果表明,隧道全线属于弱富水段,根据预测结果提出了隧道施工建议。  相似文献   

15.
通过室内试验对水泥稳定冷再生混合料的无侧限抗压强度、抗压回弹模量、劈裂强度、抗冻性能进行了系统的研究,同时研究了水泥剂量、旧料掺加比例、温度对水泥稳定再生混合料的影响.研究表明,水泥剂量为5%时,冷再生材料的强度和其他路用性能指标均满足规范的要求.  相似文献   

16.
分析了旧水泥混凝土路面板产生裂缝的原因及破坏类型,对实体工程裂缝进行调查分析,介绍了在旧路加铺改造中采用的针对轻、中、重裂缝的处治方法与施工工艺,通过实体工程应用对其使用效果进行了评价。  相似文献   

17.
阐述了刚构—连续组合体系桥梁桥墩的刚度对结构变形和内力状态的影响,结合高薄壁墩的特点,对仁义河特大桥桥墩刚度设计和结构体系的适应性进行分析研究,为同类型桥梁的设计提供借鉴。  相似文献   

18.
随着国家高速公路的迅猛发展,公路隧道越来越多地应用于高速公路的建设当中。当隧道经过煤层或采空区时,隧道周边围岩就会有瓦斯存在。作为特殊地质地段隧道的一种,瓦斯隧道施工过程中,要特别注意隧道内瓦斯的浓度,否则,极有可能发生瓦斯爆炸,引起工程事故。结合松卜岭隧道的瓦斯防护技术设计,主要讨论隧道通过煤层时,隧道掘进施工过程中的瓦斯突出危险性预测及防突措施。  相似文献   

19.
平阳高速阳曲1号隧道进口左线在左导坑掌子面掘进出渣完毕后,进洞立架支护过程中发现仰拱端头至掌子面初支拱脚处出现明显的塌陷现象,未浇筑仰拱的里程段初支表面出现明显的开裂及喷射混凝土脱落掉块现象,掌子面未支护部分掉块加剧。处理的基本思路为,导管注浆预加固的方法,待塌方体强度增长后进行开挖、支护,待二衬施工后进行洞顶回填处理。  相似文献   

20.
对粒状类材料的模型进行了分析比较,并对粒状类材料的各向异性特性对路面结构的影响做了相关总结,为粒状类材料在今后我国公路工程建设中的广泛使用提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号