首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 66 毫秒
1.
正交异性钢桥面板的疲劳寿命评估   总被引:5,自引:0,他引:5  
钢桥疲劳是由于各种车辆轮载反复作用引起的累积损伤过程,很容易疲劳开裂,因此疲劳验算是钢桥面板设计中的一项重要任务。利用静力试验的应力结果,并结合ANSYS有限元数值计算,提出了闭口纵肋正交异性钢桥面板的疲劳验算方案,在理论上对钢桥面板进行了寿命的具体分析。  相似文献   

2.
正交异性钢桥面板足尺疲劳试验   总被引:3,自引:0,他引:3  
以某大跨径斜拉桥采用的正交异性钢桥面板为工程背景,进行钢桥面板疲劳性能试验研究,足尺疲劳试验循环次数累积达到1 020万次.试验结果表明:加劲肋与盖板连接部位出现了纵向疲劳裂纹;加劲肋与横隔板连接的焊缝端部出现了在焊趾处萌生并沿加劲肋腹板扩展的疲劳裂纹;受焊接残余应力影响,处于疲劳荷载压应力区的腹板与横隔板连接焊缝端部也萌生了疲劳裂纹;横隔板挖孔部位无疲劳裂纹;若以测点应力发生变化为疲劳失效判据,则加劲肋与横隔板连接端部的疲劳细节高于AASHTO中D类和Eurocode的63类细节等级,加劲肋与盖板连接的疲劳细节高于AASHTO中D类和Eurocode的71类细节等级;若以出现疲劳裂纹为疲劳失效判据,则其疲劳细节高于AASHTO规范中D类和Eurocode的80类细节等级.  相似文献   

3.
为保证广州明珠湾大桥主桥疲劳性能及寿命满足要求,根据该桥正交异性钢桥面板设计尺寸和构造,采用与施工现场相同焊接条件,制作8个足尺单U肋模型并进行疲劳试验,确定桥面板的疲劳破坏关注点及其疲劳寿命曲线;建立桥面板有限元模型,分析实际车辆荷载作用下桥面板的疲劳力学性能,并根据名义应力法确定该桥钢桥面板的疲劳寿命。结果表明:桥面板U肋与顶板焊接位置、U肋与横隔板围焊位置为疲劳易损部位,循环次数为5×106次时,两处常幅疲劳极限分别为42.04 MPa和60.30 MPa;桥面板U肋与顶板焊接位置最大应力幅为14.02 MPa,小于常幅疲劳极限,可不考虑疲劳寿命;U肋与横隔板围焊位置最大应力幅为64.73 MPa,大于常幅疲劳极限,桥面板疲劳寿命为158年,满足大桥设计基准期100年的要求。  相似文献   

4.
许航  鲍力  刘旭锴  谢增奎 《公路》2024,(1):124-133
采用有限元计算方法,对某大桥钢桥面铺装在采用钢-UHPC超轻型组合梁优化前后的钢箱梁节段正交异性钢桥面板的主要连接接头进行了分析,研究了在轮轴荷载作用下主要疲劳裂纹的控制应力的分布特征及应力影响面,建立了较全面的荷载作用与应力效应的对应关系,并由此推算出实桥在设计疲劳荷载作用下的应力历程及相应的应力谱。针对设计疲劳寿命周期内的正交异性钢桥面板的各构造细节,根据Miner疲劳损伤累积理论计算出相应的疲劳累积损伤,并对其疲劳寿命进行评估。采用普通钢桥面铺装时,靠近顶板与U肋、U肋与横隔板连接处的主要疲劳裂纹,其疲劳累积损伤度在设计使用寿命周期内均大于1,存在较高的疲劳开裂风险。经钢-UHPC超轻量组合桥面板设计优化后,顶板与U肋连接处抗疲劳性能改善效果显著,在大桥设计寿命周期内可满足抗疲劳设计的使用要求;但设计优化对横隔板-U肋-顶板连接处的抗疲劳性能影响有限,在设计使用寿命周期内,疲劳裂纹C.5、C.6、C.6.1、C.7仍存在较高的开裂风险,需引起重视。  相似文献   

5.
针对正交异性钢桥面板,设计了相应的典型焊接构造细节,并进行了疲劳试验研究.疲劳试验结果表明,(1)横肋受力比较复杂,在箱梁端部横隔板与纵肋焊接位置下端首先出现细微的疲劳裂纹;(2)纵肋与顶板焊缝连接处外侧顶板与纵肋的损伤发展较大,疲劳破坏的位置为面板与纵肋交汇处焊缝构造,且均发生在面板母材上,而内侧顶板则无明显的损伤.同时,基于残余应变模型,研究了正交异性钢桥面板损伤发展历程,并利用连续分段函数模型描述整个寿命过程中的损伤累积规律,与已有试验资料对比表明了该函数模型的正确性.  相似文献   

6.
疲劳开裂是正交异性钢桥面板常遭遇的病害之一,而其与桥面铺装刚度较大使得关键细节应力幅过大密切相关,因此,利用UHPC提升桥面铺装刚度是缓解疲劳应力的重要手段.为研究实际车流作用下的关键细节的疲劳性能,以跨沿洛河某公路斜拉桥为例,开展了钢-UHPC组合铺装正交异性钢桥面板构造细节的应力影响面分析,并利用监测记录的实际车流...  相似文献   

7.
为研究正交异性钢桥面板典型疲劳细节在单轮荷载作用下的应力及疲劳损伤度,以福州长门特大桥为背景,采用ABAQUS有限元软件建立钢桥面板节段模型和3处易开裂部位(横隔板-U肋焊缝、横隔板处和横隔板间的顶板-U肋焊缝)的子分析模型,分析车轮荷载作用位置变化时疲劳细节的应力时程;并采用雨流计数法分析各细节处的应力幅,对疲劳细节进行疲劳损伤度分析。结果表明:单轮荷载顺桥向位于相邻横隔板间时,对横隔板处的顶板-U肋焊缝应力产生较大影响;荷载横向分布接近±750mm时,疲劳细节的应力时程曲线较为平缓,荷载对其应力的影响较小;疲劳损伤最大的是横隔板处的顶板-U肋焊缝焊根部位,该部位易产生疲劳破坏。建议在该部位增设钢角撑或钢板等,以降低该位置的应力幅和疲劳损伤度,提高结构的耐久性。  相似文献   

8.
新型UHPC—大纵肋波折板正交异性桥面板取消了顶板与纵肋焊缝,减少了横隔板与纵肋焊缝,为改善正交异性钢桥面板控制部位的疲劳性能提供了一个有效新途径。然而,由于波折板与横隔板保留横向焊缝,其疲劳风险仍然可能存在,故针对纵肋与横隔板位置的关键疲劳细节,采用数值分析并结合热点应力法对各参数影响下的轮载应力幅和疲劳寿命进行评估验证。结果表明,新型组合桥面板的大纵肋波折钢板及横隔板的疲劳寿命主要受弧形切口顶应力幅控制,施工时应加强切口打磨质量,防止疲劳开裂。另外,UHPC板厚增大、横隔板间距减小以及横隔板厚度加大时,各疲劳细节应力幅均有减小趋势,但加大纵肋高度或填充混凝土补强纵肋后,其各疲劳细节应力幅增减趋势并不一致。通过合理参数设计可使得各疲劳细节应力幅趋势均匀,获得优异的抗疲劳性能。  相似文献   

9.
吴丽丽  姚超  郑贺崇 《公路与汽运》2022,(3):112-117+121
正交异性钢桥面板具有自重轻、承载性能好、跨径大、装配速度快等优点,逐步取代了传统砼桥面板。随着近年来交通量的迅猛增加,正交异性钢桥面板的焊缝疲劳问题愈发突出,其中以纵肋-顶板焊缝的疲劳开裂最常见,桥面板、横梁、纵肋三者相交位置也是桥梁结构中对疲劳最敏感的部位。文中对正交异性钢桥面板的发展历史、力学性能、疲劳问题及正交异性钢桥面技术的发展等进行梳理,并对正交异性钢桥面板的未来发展进行展望。  相似文献   

10.
为研究公路钢桥正交异性板的疲劳破坏行为及疲劳强度,以重庆江津中渡长江大桥为背景,选取其主跨梁段建立正交异性钢桥面板的足尺试验模型,进行疲劳试验。试验过程中对疲劳易损构造处的应力数据进行采集,观测其开裂情况,并采用热点应力法评估其疲劳强度。结果表明:加劲肋腹板与横隔板切口焊接处出现疲劳裂缝;顶板与加劲肋腹板焊接处出现纵向疲劳裂缝;横隔板切口处无疲劳裂缝产生,但存在较大拉应力;加劲肋腹板与横隔板切口焊接处的疲劳强度大于Eurocode规范中的90类细节的疲劳强度,也大于AASHTO规范中的C类疲劳强度,顶板与加劲肋腹板焊接处的疲劳强度大于Eurocode规范中的112类细节的疲劳强度,也大于AASHTO规范中的C类疲劳强度。  相似文献   

11.
对钢桥面板整体模型进行了有限元分析。结果表明,顶板横向应力在横桥向的分布表现出类似弹性支承多跨连续梁的受力特点,且顶板横向应力基本全部为弯曲应力,膜应力很小,在顶板-纵肋连接处纵肋应力远小于顶板横向应力。顶板-纵肋连接处的应力纵向和横向影响线很短,疲劳验算可不考虑同一车辆轴重间的相互影响及多车效应。增加顶板厚度可大大降低顶板的应力幅,铺装层的完整性对钢桥面板十分重要。此外,还对该类型接头的疲劳分级及现行欧洲规范Eurocode和美国规范AASHTO LRFD的相关条款进行了分析。为考虑车辆荷载通过引起的非成比例多轴疲劳效应,轮荷载滚动加载足尺模型试验和分析方法需要进一步深入研究。  相似文献   

12.
某跨江大桥为主跨460m的斜拉桥,运营多年后正交异性板钢箱梁出现大量裂纹,提出采用超高性能混凝土(UHPC)组合桥面(由配钢筋网的UHPC层与钢桥面板通过短栓钉组合而成)进行改造。为选择合适的改造方案,采用有限元法建立原钢箱梁和UHPC组合桥面钢箱梁(UHPC层厚4.5,5.5,6.0cm)模型,分析各疲劳细节应力及UHPC层应力;开展UHPC层配置钢板条的组合结构模型试验,验证其疲劳性能。结果表明:UHPC组合桥面降低了钢箱梁各疲劳细节最大应力幅,降幅为11%~88%,顶板疲劳细节处裂纹尖端最大应力幅降幅达92%;疲劳荷载作用下,UHPC层顶面应力较低,钢桥面板开裂后UHPC层底面应力较大;采用钢板条对5.5cm厚UHPC层的组合结构加强后,UHPC层名义开裂应力达43.2MPa,200万次疲劳寿命达22.1MPa,疲劳性能满足要求,选择该方案进行改造。  相似文献   

13.
采用正交异性钢桥面板的铁路钢桁梁设计   总被引:4,自引:0,他引:4  
介绍了采用正交异性钢桥面板的铁路钢桁梁的结构设计,分析了钢桁梁采用这种整体桥面结构对高速行车的作用与意义,研究了采用整体桥面结构后钢桁梁的受力特性。  相似文献   

14.
正交异性钢桥面板的疲劳问题属于多疲劳失效模式下的结构体系疲劳问题,为研究其结构体系的疲劳失效模式和疲劳抗力,以典型的正交异性钢桥面板为研究对象,提出基于主导疲劳失效模式的结构体系疲劳抗力评估方法。由正交异性钢桥面板的重要疲劳失效模式入手,设计3组共8个足尺节段模型,通过疲劳试验研究确定纵肋与顶板焊接细节和纵肋与横隔板交叉构造细节的重要疲劳失效模式及其实际疲劳抗力;基于所提出的结构体系疲劳抗力评估方法,探讨引入镦边纵肋和双面焊等新型构造细节条件下正交异性钢桥面板结构体系的疲劳抗力问题。研究结果表明:纵肋与顶板焊接细节主导疲劳失效模式为疲劳裂纹萌生于焊根并沿顶板厚度方向扩展,而纵肋与横隔板交叉构造细节主导疲劳失效模式为疲劳裂纹萌生于端部焊趾并沿纵肋腹板扩展;初始制造缺陷会显著降低正交异性钢桥面板重要疲劳失效模式的疲劳抗力并导致疲劳失效模式迁移;对于正交异性钢桥面板的结构体系而言,引入新型镦边纵肋与顶板焊接细节无法提高结构体系的疲劳抗力;而引入纵肋与顶板新型双面焊细节,可使结构体系的主导疲劳失效模式迁移至顶板焊趾或纵肋与横隔板交叉构造细节,结构体系的疲劳抗力得到显著提高。  相似文献   

15.
纵肋与横隔板连接是控制钢桥面板耐久性的关键构造细节,其在轮载作用下应力传递复杂,构造设计不当极易引起疲劳裂纹。目前常规式纵肋与横隔板连接在运营过程中可能发生的疲劳裂纹形式有横隔板弧形开孔裂纹、焊缝端部横隔板裂纹、焊缝端部纵肋水平裂纹或竖向裂纹,针对常规式连接的不足,设计上进一步提出内肋式和无缝式2种构造类型。采用有限元方法,以纵肋与横隔板连接可能出现裂纹的4类细节为对象,基于应力影响面分析,讨论了车辆轮载移动对各细节局部受力的影响,研究了常规式、内肋式和无缝式3种构造类型的疲劳损伤特征。结果表明:轮载作用下4类细节的局部效应非常显著,纵向影响区域约在3道横隔板之间,横向影响区域约在2个纵肋范围;考虑轮迹横向概率分布,各细节应力幅横向折减系数在0.94~0.97范围内。常规式连接弧形开孔细节应力幅最大,主要受面内变形控制,纵肋壁板水平细节次之,表现出明显的面外弯曲特性。与常规式连接相比,内肋式连接纵肋壁板水平细节和竖向细节最大应力幅分别降低28%和29%,减缓了纵肋在焊缝端部的应力集中程度。无缝式连接可能的疲劳破坏形式减少为横隔板焊趾开裂和纵肋壁板焊趾开裂2类,分析发现这2类细节均主要处于受压状态。常规式连接疲劳寿命预估为41.2年,纵肋壁板出现水平裂纹导致疲劳破坏的可能性较大;内肋式连接疲劳寿命由横隔板弧形开孔细节控制,较常规式连接提高58%;无缝式连接疲劳寿命预估为85.3年,较常规式和内肋式连接分别提高107%和31%,且两细节寿命相近,从全寿命设计角度考虑该构造更为合理。  相似文献   

16.
正交异性钢板-薄层RPC组合桥面基本性能研究   总被引:6,自引:1,他引:5  
为了解决正交异性钢桥面铺装层破损及钢桥面结构疲劳开裂2类病害问题,提出了一种新型正交异性钢板-薄层超高性能活性粉末混凝土(RPC)组合桥面结构体系。基于某大桥建立有限元模型,并对比计算了纯钢梁和组合桥面结构中桥梁主缆索力和桥面系应力状态;同时,开展了足尺条带模型静载试验。研究结果表明:采用新型钢-RPC组合桥面结构后,钢面板及纵肋中应力明显降低且最大降幅超过70%,而主缆索力几乎不增加;RPC层开裂前的拉应力可达42.7MPa,远高于其在实桥荷载作用下10.08MPa的拉应力;该新型钢-RPC组合桥面结构可提高桥面系的刚度,降低钢桥面结构中的应力,从而能够基本消除钢桥面疲劳开裂的风险。  相似文献   

17.
本文选取U肋与桥面板连接区域、U肋与横隔板交叉部位、U肋等细节,通过实桥静力试验,结合有限元模型分析,研究正交异性钢桥面板局部应力的大小和分布规律.结果表明:钢桥面板各关键构造细节的应力影响线都比较短,纵向应力主要受两个横隔板间距的影响,横向应力受与其相邻的两个U肋间距内荷载的影响;当车辆通过时,测点会出现多个应力循环;在U肋-横隔板连接焊缝附近,U肋腹板上的应力水平较高;横隔板弧形切口自由边缘两侧应力性质相反,一侧受压、一侧受拉,应力幅值较大,存在疲劳开裂隐患;因此设计中应该对构造细节进行详细研究分析,并注意焊接区域的细部设计与制造,避免疲劳开裂.  相似文献   

18.
钢桥面板的疲劳问题是制约钢结构桥梁可持续发展的关键难题,纵肋与顶板传统单面焊构造细节是控制钢桥面板疲劳性能、疲劳开裂危害最为严重的易损构造细节。以中国自主研发的纵肋与顶板新型双面焊构造细节为研究对象,研发了钢桥面板纵肋与顶板构造细节疲劳试验装置,参照近期中国典型重大工程的钢桥面板结构设计参数,在系统对比分析研究的基础上,设计12个构造细节疲劳试验模型和5个节段疲劳试验模型,通过疲劳破坏试验确定了纵肋与顶板新型双面焊构造细节的主导疲劳开裂模式和疲劳强度,探究了影响其疲劳性能的关键因素。研究结果表明:纵肋与顶板新型双面焊构造细节的疲劳强度显著高于纵肋与顶板传统单面焊构造细节,等效结构应力适用于纵肋与顶板新型双面焊构造细节的疲劳性能评估;实际熔透率不低于75%时多种焊接工艺条件下纵肋与顶板新型双面焊构造细节的主导疲劳开裂模式均为疲劳裂纹在顶板焊趾产生,并沿顶板板厚方向扩展,其名义应力疲劳强度高于90 MPa,等效结构应力疲劳强度高于100 MPa;制造缺欠是影响纵肋与顶板新型双面焊构造细节疲劳性能的关键因素;所研发的试验装置可通过构造细节模型实现对实际钢桥面板中纵肋与顶板焊接构造细节的准确模拟,准确获得纵肋与顶板构造细节疲劳性能。研究成果可为该长寿命新型构造细节的抗疲劳设计和工程实践提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号