首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
上海市金山区紫金大桥为钢梁-钢拱下承式系杆拱桥,主跨跨径188 m。大桥主拱为提篮式钢箱拱,矢跨比为1/5,内倾角度12°,拱轴线为二次抛物线。主拱肋截面为矩形,宽2.2 m,高2.8 m。两片拱肋之间设置6道钢箱横向风撑,风撑外设椭圆形装饰结构。大桥主梁为采用新型钢-混凝土组合桥面板的钢梁,全宽40 m。吊杆采用高强平行钢丝束,纵向间距9 m。主拱与主梁连接处采用整体式节点板,拱肋水平推力通过整体节点板传递给钢主梁,大桥外部呈简支支撑体系。大桥主墩采用柱式墩,每个墩柱下设置一个矩形承台,横向两个承台之间通过系梁连接。基础采用钻孔灌注桩,每个承台下布置16根直径1.0 m的钻孔灌注桩,横向系梁下布置3根直径1.0 m的钻孔灌注桩。  相似文献   

2.
闫杰栋  蒋发 《世界桥梁》2012,40(4):21-25
北川新县城禹王桥为(56.1+72.0+56.1)m三孔钢筋混凝土箱形连拱桥(为风雨廊桥),桥梁上部采用传统羌族风情的钢筋混凝土框架建筑,边孔1层,中孔2层;主拱圈采用三室箱形截面,拱上四柱排架式立柱与建筑立柱对应,腹板与立柱对应(相交处设横隔板);桥面板采用现浇梁板,分跨处设缝断开,两端与碉楼连接处也断开;桥梁下部采用混凝土实体墩台、承台、群桩。主拱圈采用支架分段不分层现浇;施工期间边孔拱圈与桥台连接处设临时铰;桥墩采用施工期间推力墩形式,可单孔施工,单孔落架。  相似文献   

3.
德余高速乌江特大桥桥位处江面宽、岸坡陡,对(203+450+203) m组合梁斜拉桥和计算跨径475 m上承式钢管混凝土拱桥2个桥型方案进行比选,最终采用景观好、造价低、易养护的上承式钢管混凝土拱桥。主桥拱轴线采用悬链线,拱轴系数2.2,矢高90 m,矢跨比1/5.278。主拱圈由两幅拱肋组成,单幅拱肋为四肢等宽变高桁架结构,腹杆为钢箱和H形截面,竖腹杆与拱轴线中心径向布置。拱上立柱为钢箱截面,与拱肋、桥面系钢梁刚接。桥面系为槽形钢箱梁+粗骨料活性粉末混凝土桥面板的连续组合结构。拱座为梯形结构,采用扩大基础,交界墩采用变截面薄壁墩。采用斜拉扣挂、缆索吊装安装主拱节段、立柱单元及主梁构件。结构静力、稳定性计算及拱座受力验算均满足设计要求。  相似文献   

4.
蔚林大桥属广东省韶市坪乳公路上的一座特大桥,主跨拱圈为箱形双肋拱,拱上建筑为横置桥面板的梁式结构。现浇主拱圈混凝土支架由贝雷片拼成的两铰拱式拱架。文中主要介绍拱架的布局、安装及各加载阶段控制截面的内力验算情况,拱顶挠度的计算值及实际观测值。  相似文献   

5.
中山香山大桥主桥为双层钢桁梁公路斜拉桥,跨径布置为(136+312+880+312+136) m。桥塔采用人字形混凝土塔,下设整体式钻孔灌注桩;斜拉索采用?7 mm高强度锌-铝合金镀层平行钢丝索;约束体系采用带纵向阻尼器的半飘浮体系。主梁采用2片N形主桁的钢桁梁结构,桁宽42.2 m,标准梁段桁高2.8 m。上、下弦杆和腹杆均采用带加劲肋的箱形截面,横梁均采用鱼腹式。边跨187.2 m范围内下层桥面采用混凝土桥面板起压重作用,其余上、下层桥面板均采用正交异性钢桥面板。下层纵向钢-混结合段位于辅助墩往跨中第4个节段,距辅助墩51.2 m,设置承压板、支撑加劲肋、预应力钢束、剪力钉和PBL板;横向钢-混结合段位于下层行车道两侧钢桥面板和混凝土桥面板之间(距下弦杆2.2 m处),设置剪力钉、PBL板和1.3 m宽UHPC后浇段。采用有限元软件进行全桥整体受力分析及桥面板局部分析,结果表明:结构满足规范要求。主梁采用大节段整体吊装施工,标准吊装节段长度为25.6 m,节段间除钢桥面板和弦杆顶板采用焊接外,其余均采用高强度螺栓连接。  相似文献   

6.
上海市外环南河主景观桥为上承式钢管桁架拱桥,规划河道宽50 m。桥梁采用一跨过河,主拱计算跨径53 m,桥梁总长76.6 m。桥梁主拱肋拱轴线为二次抛物线,矢高6.235 m,矢跨比为1:8.5。拱肋、斜腹杆及平联杆采用钢管截面形式,桥面系采用钢桥面板结构形式。桥台兼顾拱脚作用,因该桥是有推力拱桥,需设置强大的基础来抵抗拱桥产生的水平推力。因此,每个桥台设置了6根φ1.5 m的钻孔灌注桩,桩长40 m。  相似文献   

7.
祁家黄河大桥为单跨180 m的上承式钢管混凝土拱桥,综述该桥主桥设计。该桥矢跨比为1/5;拱圈采用等截面悬链线,由横哑铃形桁式双肋组成;拱上立柱采用钢管混凝土柱框架结构,桥面板边孔采用20 m空心板梁与路基相接,次边孔采用16 m跨空心板,其余孔均采用标准的13 m跨空心板;该桥采用重力式拱座;拱肋吊段采用内法兰盘连接。该桥采用斜拉扣挂式无支架缆索法施工,利用钢丝绳作扣索,设计中取消了扣塔,直接将部分扣索锚固于桥台处。  相似文献   

8.
针对传统双曲拱桥加固存在的新旧混凝土结合受力不明、施工平台搭设复杂等问题,在双曲拱桥下部结构安全储备充足、需更换拱上填料的条件下,提出双曲拱桥复合套拱加固方法,即在原拱圈上新增拱肋、横系梁及加厚拱板,形成框架式受力结构,实现双曲拱桥加固。应用时,首先封闭桥面交通,拆除旧桥面及附属设施、旧拱上填料;其次在裸露的主拱圈上增设主拱肋及横系梁,根据配重需要设置拱背加厚区;然后在主拱圈及新增结构上浇筑轻质拱上填料;最后进行桥面系及附属设施施工。该方法无需拱下支架,对桥下交通影响小,安全性高,不改变桥梁外观,尤其适用于文物桥梁维修改造。在南京长江大桥双曲拱桥S56跨涉铁工程中应用该技术,有效提高了结构承载力和整体性,工期缩短约67%,综合成本降低约26%。  相似文献   

9.
宣城市凤凰桥上部结构采用双提篮梁拱组合结构.主梁采用单箱7室预应力混凝土箱梁,箱梁采用纵、横向双向预应力体系,箱梁宽35 m,两侧设混凝土挑梁,横断面宽度为50 m;拱肋为正拱圈和斜拱圈通过横撑共同组成的钢管混凝土结构.下部结构采用重力式桥台,群桩基础.结构计算分析表明该桥拱肋、吊杆、横撑、箱梁等主要构件受力及桥梁刚度、整体稳定性均满足规范要求.大桥采用先梁后拱的方法进行施工.  相似文献   

10.
安徽萧县岱湖大桥全长374 m,为15孔连拱实腹上承式钢筋混凝土拱桥(16+18+20+22+24+26+27+28+27+26+24+22+20+18+16) m。为有效控制多跨连拱效应,改善结构受力,详细介绍了该桥的总体设计和施工方案,并采用Midas/Civil软件进行结构分析。计算结果表明:1)在5号和10号墩处设置制动墩,采用了比其他墩刚度更大的群桩基础,可使连拱引起的水平推力逐步均匀缓解,同时便于拱肋结构分批落架施工; 2)拱肋截面承载能力验算最小安全系数为2. 27,裂缝最大宽度为0. 135 mm,满足设计规范要求。  相似文献   

11.
临沂南京路沂河大桥位于8度强震区且跨越断裂带,主桥采用飞雁式异形拱桥与V形墩结合的组合体系,采用大吨位摩擦式减隔震支座,以提高结构抗震性能。主桥两侧(30.3+34.2)m采用预应力混凝土连续梁;中间(135.5+135.5)m为飞雁式异形拱桥,拱桥采用双边箱钢-混叠合梁,主拱采用矩形钢箱变截面拱肋,拱肋轴线为异形偏态拱轴线,不设风撑,拱梁固结,梁端设水平系杆平衡水平推力。下部边、中V形墩均采用大悬挑箱形截面混凝土结构,群桩基础。大桥采用先梁后拱的施工顺序,叠合梁采用多点平衡顶推施工,拱肋采用桥位少支架大节段拼装施工。  相似文献   

12.
武汉市汉口至阳逻江北快速路新河大桥采用(48+196+48)m的中承式钢箱提篮拱桥。主拱采用等截面钢箱提篮拱,截面尺寸为2.5 m×4 m(宽×高),拱肋分为25个节段,采用斜拉扣挂缆索吊装法施工。2片钢箱主拱肋间设5道横撑,并外包装饰板。边拱采用预应力混凝土结构,为等高矩形截面,截面尺寸为2.5 m×4 m(宽×高),采用现浇法施工。主跨桥面系采用“钢纵横格子梁+混凝土桥面板”的组合梁体系,边跨桥面系采用混凝土格子梁体系;沿全桥通长设置钢绞线柔性系杆。吊杆采用环氧喷涂钢绞线成品索。拱座采用大体积混凝土结构,拱座主拱外包混凝土处设置装饰段,使边、主拱曲线流畅过渡。建立整体及局部模型进行计算分析,结果表明结构安全可靠。  相似文献   

13.
成贵铁路宜宾金沙江公铁两用桥为山区公铁合建桥梁,主桥为(116+120+336+120+116)m双层桥面拱桥.336 m主拱采用拱墩固结、拱梁分离的钢箱系杆拱,拱轴线为抛物线,矢跨比为1/3.36,拱肋采用钢箱结构,2片拱肋中心间距28.5m.上层铁路桥面采用箱形边主梁、纵横梁体系的正交异性整体钢桥面板,主梁边箱内高...  相似文献   

14.
武汉罗家港互通主桥采用85 m下承式简支桁架拱,为双向6车道城市桥梁。桁架拱桥横向布置2片拱肋,间距29.4 m,拱肋矢高16.9 m,矢跨比为1/6;拱肋、系杆及腹杆均采用带板式加劲肋的焊接箱型截面,拱肋间设置3道箱型截面风撑;桥面系采用密布横梁的正交异性板;桥墩采用m型门式墩,基础采用钻孔灌注桩群桩;拱桥采用支架拼装、顶推施工。  相似文献   

15.
山西省综改区大运路桥跨越潇河,向北连接太原中心城区,是潇河产业园区产业发展的主要轴线和对外联系的主要通道,设双向8车道.桥梁方案以水文化为主题,提炼曲线元素,演绎成两跨反对称外倾小拱与一跨斜跨大拱组合而成的闭合螺旋形空间纽带拱桥,跨径布置为(65+110+110+65)m,具有反对称结构的多样与统一、DNA螺旋结构的丰...  相似文献   

16.
朝阳市东大桥钢管混凝土拱桥设计   总被引:1,自引:1,他引:1  
朝阳市东大桥主桥采用中承式钢管混凝土系杆拱桥(30m 120m 30m)。详细论述该主桥的总体设计、构造特点、内力计算和结构设计。内力分析及结构设计时,钢管混凝土的力学参数(刚度、强度)取值考虑钢管与混凝土之间的紧箍力的影响,按照钢管混凝土统一理论计算。考虑到该种结构存在车桥振动较大的问题,在结构分析中尤其重视了动力特性的计算,并从结构设计上采用加大桥面系刚度和拱肋之间的横撑刚度等措施来改善桥梁的动力特性,同时对拱桥的稳定计算进行了较为详细的讨论。最后给出了此类结构设计中应注意的问题和建议。  相似文献   

17.
通过RC方柱偏压试验和RC拱肋面内受力全过程试验,对环向预应力钢绞线(LPSW)加固拱桥方法进行研究。对相对偏心距分别为0,0.25,0.5的3类RC方柱进行偏心受压试验,偏心试验表明:RC方柱加固后,预应力钢绞线先于箍筋约束混凝土,有效抑制了混凝土裂缝的纵向开展,预应力钢绞线及箍筋之间具有良好的变形协调性;LPSW加固柱承载力提高了3%~34%,LPSW加固技术适合于小偏心受压结构,偏心距越小,增强效果越明显。在偏压试验基础上,拓展了LPSW加固RC拱肋的模型试验,对LPSW加固模型拱荷载-挠度曲线、截面应变和结构破坏模式等方面进行分析。拱肋试验表明:LPSW拱肋受力过程和破坏模式与RC拱肋相似,分为弹性阶段、裂缝开展阶段和钢筋屈服阶段,最终因出现5个塑性铰形成机构而呈塑性破坏。由于环向预应力钢绞线约束,使RC拱肋提前处于3向受压应力状态,横向膨胀受到约束,避免拱肋出现拉应力,加固拱肋的初裂荷载、钢筋屈服荷载和极限荷载为未加固拱的2倍、1.6倍和1.47倍。基于偏压柱及拱肋试验结果,利用弹塑性失稳理论的等效梁柱法,建立LPSW加固拱肋极限承载力的计算公式,计算值与试验值吻合较好,且偏于安全,可用于评估实际加固拱桥的承载能力。  相似文献   

18.
大跨径拱桥主拱圈施工特别是缆索吊装钢拱架现浇主拱圈施工是一个复杂的过程。为保证施工安全,控制施工精度,需要精确确定钢拱架裸拱线形及其吊装过程扣索的控制索力。以某主跨108m的上承式钢筋混凝土拱桥为例,对缆索吊装钢拱架现测主拱圈的施工过程进行模拟,给出钢拱架裸拱线形及预抬高值的迭代算法及合理的扣索索力,对同类型桥梁仿真计算具有借鉴意义。  相似文献   

19.
原芜湖中山桥为跨度63 m的下承式混凝土系杆拱桥,由于航道升级,需进行改建。该改建工程面临与城市道路衔接的问题,为解决该问题,提出了北侧布置环形道路的桥梁方案、全隧道方案、中二街布置T形交叉桥梁方案,对3种方案进行综合比选,推荐采用T形交叉桥梁的总体方案。该方案主桥采用带副弦的梁拱组合钢结构,跨径布置为(28+90+28)m,主梁采用梁高低矮的双边箱结构,系梁梁高0.9 m,引桥中二街交叉口采用T形平面钢板梁结构,梁高0.8 m。主桥上部结构采用岸上组拼、水中浮运的方案施工,引桥上部结构采用分段预制、逐段吊装的方案施工。中山桥改建工程建设速度快,对航道、城市环境的影响小,改建后的中山桥已成为芜湖中心城区新的标志性建筑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号