首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
以某城际轨道交通工程为例,通过CFD模拟,计算全封闭声屏障内列车行驶产生的活塞风压,作为结构设计的依据。计算中考虑单车通过、两车在声屏障端部截面交会以及截面突变处交会的不同工况。计算结果表明,在全封闭声屏障顶部设置通长1 m宽通风排烟口、车速120 km/h的条件下,列车行驶产生的活塞风压范围为-192~392 Pa。  相似文献   

2.
高速车辆气流噪声的试验研究   总被引:2,自引:1,他引:2  
在分析了车辆气流噪声与表面脉动压力关系的基础上,在风洞中对车辆表面脉动压力的分布、频率特性及速度特性进行了试验研究。结果表明:由于气流在A立柱后产生分离并形成螺旋向上的纵向涡,使得在前侧窗附近的表面脉动压力明显地高于其他区域,成为主要的噪声源区之一;车辆表面脉动压力的能量与气流速度的4次方成正比;车辆表面脉动压力的幅值在低频率时较大,并随频率的增大而减小。比较了不同形状的A立柱对侧窗表面脉动压力的影响,对降低汽车气流噪声作了初步探讨,发现A立柱形状与脉动压力的特性关系不大,但对脉动压力的大小影响较大。  相似文献   

3.
为了验证隧道空气动力效应之理论现象,并证实设计阶段之数值模拟成果及风压标准,乃选定台湾高速铁路之2座长隧道,于隧道内布设气压计配合不同的位置、几个特定的列车速度进行实地测试。量测结果显示:高速铁路列车所引致空气动力效应之现象,大体上与先前研究文献及规划时期数值模拟之成果一致,车头进入、出隧道时会引发一个明显升高之压缩波,列车通过后(车尾进出洞口时)由于空气动力拖曳气流而压力骤降至形成张力波。不论正压或负压峰值,在车速达到220~230 km/h时,便可达1.0 kPa;当车速接近300 km/h时,实测得之最大压力值约1.35 kPa;所有现地实测之压力峰值尚低于设计规范之标准值。  相似文献   

4.
对几种常用的声屏障结构建立仿真模型,研究在不同结构形式下的噪声传播的声场分布特性及降噪性能,分析了声屏障不同结构类型与降噪性能之间的影响,对四种常用带顶部结构的声屏障进行了讨论。设置声屏障对于屏障后音影区有较好的保护效果。声波到达声屏障产生顶部绕射,绕射损失造成的降噪量明显,2 m的声屏障高度增加0.5 m之后,各测点的降噪值平均增加了5 db(A)。带顶部结构的声屏障的降噪值值明显高于不加任何顶部结构的直立型声屏障,分别比2 m直立型的声屏障高5-7 db(A)。  相似文献   

5.
基于三维粘性非稳态可压缩Navier-Stokes方程和k-ε两方程紊流模型,采用有限体积法对高速列车通过时声屏障上气体压力和气动作用力进行计算。分析了两种高度、三种形式声屏障和四种列车运行速度条件下,单车通过与会车过程中的声屏障气动特性。结果表明:列车通过时,直立板型声屏障所受单位长度气动力最小,倒L型声屏障最大,内倾45°型居中;不同类型声屏障单位长度上气动力与列车运行速度均成2次方函数关系。会车过程中作用在声屏障上气动作用力大于单车通过时相应的气动作用力。  相似文献   

6.
为了研究横风作用下紊流参数对车-桥系统气动力特性的影响,以典型32 m简支梁桥和CRH2列车头车为背景,首先根据阻塞比要求设计几何缩尺比为1:25的桥梁和列车测压试验模型;然后通过在风洞试验段入口处采用"格栅条"被动紊流发生装置,模拟一系列紊流风场;最后开展不同工况下车-桥组合风洞动态测压试验,测试列车和桥梁表面风压,并积分获得列车和桥梁气动力。基于此,分析了双线轨道不同位置下,顺风向紊流度、紊流积分尺度对列车表面风压和车-桥气动力分布的影响规律,并讨论了风攻角对车-桥气动力系数的影响。结果表明:列车表面平均风压系数随紊流度的增加而减小,紊流风场中列车和桥梁气动侧力(阻力)系数均小于均匀流场;紊流度对迎风侧轨道列车的影响更为显著,而对车头气动力特性影响较小,车身侧力(阻力)系数随紊流度增加而显著降低,升力系数和力矩系数随紊流度的变化规律并不显著;桥梁气动力系数对紊流度变化的敏感程度小于列车,其侧力(阻力)系数并非随紊流度的增大而单调减小,升力系数随紊流度增加而增大,力矩系数随紊流度的变化规律并不明显;车-桥气动力系数受紊流积分尺度的影响小于紊流度,桥梁侧力(阻力)系数受影响程度大于升力系数和力矩系数;列车位于背风侧轨道时,车-桥气动力系数随紊流积分尺度变化的敏感程度小于列车位于迎风侧轨道;风攻角和紊流参数对车-桥气动力特性的影响是相互独立的,且受列车路线布置方式影响不大。研究结果为紊流风场下的行车安全性提供了数据和资料。  相似文献   

7.
史宪明  吴剑  万晓燕  陈洋宏 《隧道建设》2019,39(7):1118-1124
为推进中国高速铁路隧道技术标准深化研究,开展400 km/h隧道结构设计参数的研究工作,而隧道净空面积为其中的一项重要内容。为尝试从列车内部瞬变压力角度得到400 km/h高速铁路隧道净空面积,建立基于舒适度标准的高速铁路隧道净空面积确定方法,以控制工况为基础,通过计算和分析,从列车密封性能方面讨论维持现有隧道净空断面的可能性,并研究提出400 km/h隧道净空断面建议值。主要结论有:1)现有350 km/h单线隧道以400 km/h运营时,列车动态密封指数最低为22 s,车内瞬变压力超标的可能性较大; 2)400 km/h单、双线隧道净空面积建议值分别为85 m~2和100 m~2,对应的列车动态密封指数最低为18 s,更加符合现有标准对列车密封性能的要求,车内瞬变压力超标的可能性大幅降低; 3)提出的400 km/h高速铁路隧道净空面积建议值和对应的密封性能要求可为有关标准、规范的制订提供参考。  相似文献   

8.
针对后视镜引起的前侧窗与车内气动噪声问题,采用计算流体力学(CFD)方法对某商用车进行车外后视镜区域数值模拟和车内噪声预测的研究。稳态分析采用RANS模型中SST(Menter)k-ω模型,瞬态分析采用基于SST(Menter)k-ω的分离涡模拟(DES);通过分析后视镜侧窗区域的稳态静压力与瞬态动压力、速度和涡量云图,揭示了因A柱后视镜而产生车窗表面的湍流压力脉动的机理;同时求解瞬态流场获得两侧车窗表面湍流压力脉动载荷。采用声学FEM方法将车窗表面湍流压力脉动作为边界条件来计算气动噪声的传播,基于车内声学空间不同频率的声压级云图分布规律,说明了车内气动噪声主要集中在中低频段和声压级最大的分布区域;驾驶员左耳旁声压级曲线展示了20-2500 Hz频段内声压级变化规律。最后进行实车道路滑行测试,证实了气动噪声在车速80-110 km/h时较为明显的结论;采用CFD结合声学有限元的方法可较为准确地预测车内100-2500 Hz气动噪声的声压级,为优化后视镜、降低驾驶室内气动噪声提供仿真和试验的技术方案。  相似文献   

9.
根据计算进气格栅开、闭两种状态的整车模型的空气动力学性能参数对比风洞实验结果,确定了原设计的整体流动仿真的精度;而基于该模型运用DES法计算的侧窗表面测点的声压级与实验结果对比,确定了2mm网格气动噪声仿真的精度。对新方案和原设计运用Q准则的流态显示,表明新方案后视镜尾流区的流动状态得到改善;侧窗表面的湍流压力脉动的对比表明,后视镜外形的改动对湍流压力脉动影响很小;而通过Lighthill声类比法获得的声压脉动却有显著差异,新方案在2 000~8 000Hz范围内的声压脉动明显减小。Beamforming测试的声源分布和改进效果,与CFD计算预测一致,且与车内的声压级测试有很好的相关性。以上研究表明:Q准则的流态显示可用于气动噪声的定性评估;声压脉动是后视镜气动噪声仿真最主要的评价依据,不可忽略。  相似文献   

10.
黄河特大桥为神华大准铁路(重载铁路)增二线上跨度为(96+132+96)m的三跨预应力混凝土连续刚构桥,由于线路运能提升的需要,拟将C80B和KM70列车通行速度由60km/h提升至约80km/h。为对提速后的黄河特大桥进行适应性评估,分别采用光纤光栅应力传感器、挠度传感器及振动传感器对列车编组提速过程中的桥梁应力、挠度及振动响应进行监测分析,并分析了桥梁发生竖向共振时的列车临界速度。结果表明,当KM70列车以74km/h的速度通过桥梁时,列车激励频率与车-桥耦合体系的竖向有载频率接近,桥梁挠度变化幅度及应力幅较大,且动力系数超过规范值,由此判断桥梁发生了竖向共振。建议KM70列车不提速或提速前对桥梁进行减振处理,并采用车-桥耦合方法对桥梁竖向共振进行深入分析。  相似文献   

11.
基于三维、定常、不可压缩、粘性流体的RANS方程和κ-ε两方程模型,运用计算流体力学软件Fluent,对在列车风致脉动力与自然风荷载联合作用下的高速铁路声屏障进行数值模拟,分析在不同的风向角及风速下,自然风荷载对声屏障所受列车风致脉动力的影响。结果表明:自然风荷载对声屏障所受的脉动峰压影响较大,在对声屏障进行结构静力学设计时必须考虑自然风荷载的影响。  相似文献   

12.
罗攀 《上海公路》2011,(2):26-28,39
对车辆扰动下高架道路声屏障屏体表面风荷载进行了数值模拟分析,获得了车辆经过时作用于屏体表面的典型的风压荷载时程。通过参数分析给出了屏体不同位置风压荷载的差异及原因。通过对屏体表面极值风压荷载的深入分析得出:现行采用声屏障所在地区50年一遇基本风压作为其设计控制荷载是不合理和不安全的。  相似文献   

13.
圆形斜拉索长细比大、阻尼及刚度小,因而其经常发生风致振动,尤其是涡激振动。涡激振动是一种限幅振动,其发生风速较低,因而斜拉索经常发生涡激振动现象,为此提出一种被动自吸吹气流动控制措施来抑制斜拉索涡激振动。通过节段模型气弹试验得到,被动吸吹气控制方法在套环间距适当下使得斜拉索涡激振动区间变窄,甚至可以完全抑制其发生涡激振动。通过分析斜拉索节段模型表面压力分布,得到被动自吸吹气能大幅度降低压力脉动值和脉动风荷载;且模型背风面的平均压力值的平台区也有所提升,表明平均阻力也有所减小。频谱分析表明:此控制方法改变了旋涡脱落模式及脱落强度。最后由尾流速度剖面可得,被动吸吹气流动控制方法缩小了模型尾流区宽度,尾流中的速度脉动也极大降低。折算风速为5.99时,对尾流速度时程做频谱分析可得,吸吹气控制方法能抑制住无控圆柱模型尾流中周期性交替脱落的旋涡。套环控制方法应用于三维柔性索性索模型上,能极大地降低柔性斜拉索的前三阶涡激振动幅值,同时发现套环间距越小,控制效果越强。  相似文献   

14.
为研究运动车辆气动力的展向相关性对桥上运动车辆响应的影响,在分析运动车辆顺风向和竖向脉动风速谱的基础上,发展出一种新型的运动车辆脉动风速相干函数形式,推导出与顺风向和竖向脉动风速对应的运动车辆气动力的展向相关性传递函数,并根据“余弦规则”得到作用在运动车辆上的抖振力谱。通过建立列车-轨道-桥梁多体系统耦合振动仿真模型,以单节列车在典型的高速铁路桥梁上行驶为例,对比不同车速、不同风速与不同地表类型时,运动车辆气动力的传递函数对桥上运动车辆响应的影响。研究结果表明:当考虑上述传递函数时,车辆响应的均方根均有不同程度的降低,其中对车体横向和竖向加速度均方根的影响最为显著;当车速为40 m·s-1时,在考虑与不考虑传递函数情况下,车体横向加速度均方根的相对误差高达40.6%,车体竖向加速度均方根的相对误差也高达36.6%;随着车速的提高,各车辆响应均方根的相对误差均逐渐变小;随着风速的提高,轮重减载率和轮轨垂向力均方根的相对误差均逐渐变大,而车体竖向Sperling指标和轮轨横向力均方根的相对误差却先增加后减小;从A类地表类型到D类地表类型,车体加速度均方根以及车体Sperling指标的相对误差均逐渐增大,而轮轨力均方根、脱轨系数均方根、轮重减载率均方根的相对误差均先增大后减小。  相似文献   

15.
马辉  吴剑  高明忠  王海云 《隧道建设》2019,39(9):1412-1422
铁路隧道净空面积的确定,不仅应考虑隧道建筑限界和机车车辆限界,还要考虑列车通过隧道时诱发的空气动力学效应。基于一维、可压缩、非定常的流动假设,推导得到车内瞬变压力、洞口微气压波和空气阻力计算公式,并结合这3个指标对现有城际铁路、高速铁路隧道设计规范进行论证和优化。结果表明: 针对大于10 km的特长隧道,在一定长度范围内,且在提高列车密封水平、增加洞口微气压波缓冲结构的情况下,可对特长隧道净空断面进行优化。  相似文献   

16.
赵代强 《路基工程》2014,(1):171-174
遂渝二线为国内首例在既有线开行动车组时速165 km条件下进行的增建二线铺架工程,对动车组通过风压检算、临近既有线44~65 m的小线间距范围内架梁、铺轨、单元焊接及应力放散锁定施工工艺等关键技术进行了研究,成功解决了与既有线距离44~65 m范围内铺架施工技术难题,最大限度保障了既有线运营和工程施工的安全质量,降低了工程成本,缩短了工期。  相似文献   

17.
大跨度桥梁一般较柔且桥面较高,车辆与桥梁间耦合作用明显,桥面风速较大时车辆风荷载也将增大,列车-桥梁系统抗风安全性成为重要课题。为了研究阵风环境下高速列车驶过独塔斜拉桥时的耦合振动特性,利用有限元方法建立多自由度有限元独塔斜拉桥子系统(转为线性弹性体),利用多刚体动力学方法建立CRH3四动四拖八辆编组高速列车子系统,在两子系统基础上,搭建起高速列车-独塔斜拉桥刚-柔耦合大系统。利用线性滤波法并考虑空间竖向和横向相关性生成了空间脉动阵风,其作为外部激励输入车-桥系统中,选用Park数值积分方法进行了求解。在此基础上,通过时域/频域方法分析阵风激扰对车-桥系统的影响,并继续研究风攻角、行车速度对车辆安全运行的影响,并得到相应条件下的车速限值。研究结果表明:利用有限元与多体动力学方法结合的刚-柔耦合系统同时阵风作为激励输入,可以有效模拟风-车-桥系统;空间脉动阵风使得车-桥系统各动力学响应明显加剧,并激起车辆及桥梁的低频振动;车速提高使桥面低频及车辆中低频振动被激起,振动向更高频率移动;风攻角在60°~90°时影响最大;在预设条件下,车速为230 km·h-1时,列车轮重减载率已超过安全限值(0.8),此时列车在桥梁上行驶安全已无法得到保证。  相似文献   

18.
用现场静载试验的方法,利用预埋钢筋计和土压力盒,进行了高速铁路路基声屏障桩基础在竖向荷载作用下的桩身应力和桩底反力的测试。重点分析声屏障桩基础在荷载作用下的沉降量和桩身内力。结果表明:对于声屏障的桩基础,采用试验时的桩长、桩径和桩身混凝土,桩基的承载力很大,桩顶荷载主要由桩周土的侧摩阻力来承担,并分析了此类桩基础承载力的影响因素,为今后进一步改进声屏障桩基础的设计提供了可供参考的试验数据和经验积累。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号