首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
钢筋混凝土桥梁结构动力有限元模型修正   总被引:8,自引:2,他引:8  
在建立桥梁结构有限元模型时,所建的有限元模型与结构的真实情况不可避免地存在着差异。要建立精确的有限元模型,必须利用大桥现场环境振动测量值得到一组结构实测模态参数,用以作为有限元模型修正的基准。利用有限元分析软件ANSYS的优化功能,对桥梁结构进行模型修正,修正后有限元模型的动力特性更加趋近于环境振动实测值。修正后的结构有限元模型可以作为大桥损伤监测和整体性评估的基准。  相似文献   

2.
桥塔是影响大跨径桥梁动力特性的重要部分之一,该文以洞庭湖大桥岳阳侧桥塔为研究对象,对其进行了环境振动试验,利用频域法进行了模态参数识别,获得了前6阶频率。建立了桥塔的梁单元、梁-实体单元有限元模型,并对模型计算结果进行了比较。选择梁-实体单元模型作为初始有限元模型,采用灵敏度方法进行了模型修正。修正后参数取值合理,频率误差明显减小,误差均小于3%,表明修正后的参数与实际值接近,得到了符合实际的岳阳侧桥塔基准有限元模型。  相似文献   

3.
自锚式悬索桥一般采用先架设主梁后安装主缆的施工方式,在体系转化过程中非线性受力状态非常复杂,因此有限元模型仿真分析计算难以准确把握真实桥梁的力学行为,所以对自锚式悬索桥有限元模型修正是必要的。依据能够反映真实桥梁结构响应的测试结果对桥梁的有限元模型进行修正,从而得到一个准确反映桥梁受力状况和健康状态的模型。该文通过对阳明滩大桥进行环境振动试验测试得到了桥梁固有频率,并以此为目标控制阳明滩大桥的有限元模型修正的各项参数配置。应用基于响应面法对该自锚式悬索桥实现基于动力测试的有限元模型修正,使得模型的准确度有了显著的提高。对其他结构相近的自锚式悬索桥有限元模型的建立有很好的借鉴作用。  相似文献   

4.
基于响应面方法的桥梁静动力有限元模型修正   总被引:3,自引:0,他引:3  
提出了一种基于响应面方法的桥梁静动力有限元模型修正技术,并成功地应用到了常德市白马湖公园虹桥的有限元模型修正当中.利用结构静载位移和振动频率等现场实测静动力响应,构造联合静动力的结构有限元模型修正的目标函数,在相关指标灵敏度分析的基础上筛选待修正参数,并利用响应面方法拟合桥梁静动力响应的代理模型.最后利用响应面替代模型(Meta-model)对该桥进行有限元模型修正,使得桥梁响应的实测值与计算值达到较好的吻合程度,经过修正后的有限元模型能够反映该斜拉桥的静动力特性,可以作为该桥的基准有限元模型.  相似文献   

5.
连续刚构桥动力特性参数识别与有限元模型修正   总被引:3,自引:0,他引:3  
以东营黄河公路大桥——大跨预应力混凝土连续刚构桥为对象,首先利用ANSYS建立了全桥的三维有限元模型并进行了理论模态分析;并应用频率分解方法(FDD)和特征系统实现算法(ERA)分析了该桥所安装的健康监测系统采集的加速度响应数据,进行了桥梁动力特性参数识别;最后,在所建立的初始有限元模型和识别的实际桥梁动力特性参数的基础上,采用模型修正的方法,得到了该桥修正的有限元模型。研究结果表明,通过该桥监测系统采集的加速度数据可以较好地识别其模态参数,所识别的模态参数可作为结构动力特性修正的依据;修正后的有限元模型能更真实地反映结构的动力特性,模型修正的结果较好地反映了实际桥梁的物理特性。该模型可以作为该桥梁长期健康监测与状态评估的基准模型。  相似文献   

6.
联合模态柔度和静力位移的桥梁有限元模型修正方法   总被引:3,自引:0,他引:3  
利用商用软件ANSYS提供的零阶和一阶优化算法,通过1个仿真简支梁有限元模型修正算例,比较了不同目标函数的有限元模型修正效果,提出了一种联合动力模态柔度和静力位移的有限元模型修正方法,并将这种方法运用于一座加固后的刚架拱桥的有限元模型修正,建立起了该桥加固后的基准有限元模型。结果表明:利用修正后的刚架拱桥有限元模型计算的静、动力特性与实测结果吻合良好,这种联合静、动力的有限元模型修正方法具有比较好的模型修正效果,修正后的桥梁有限元模型可以服务于桥梁健康监测和安全评估。  相似文献   

7.
以湖南邵怀(邵阳—怀化)高速公路炉坪高墩大桥为例,引入响应面法,以桥梁振动频率和静力变形为目标更新桥梁有限元模型,并和基于灵敏度的方法进行对比,验证了响应面法有限元模型的计算效率。修正结果表明,响应面法有限元模型以可靠的结构静力响应为目标,将响应面法更新有限元模型发展到结构静力修正有限元模型方面,不仅提高了更新有限元模型结果的计算精度,而且计算工作量较小,其修正过程不完全依赖有限元软件,可提高修正效率。  相似文献   

8.
针对大型桥梁静动力有限元模型修正问题,提出一种基于元模型的修正方法。首先,对桥梁结构进行子结构划分,并利用人工神经网络算法建立修正参数与结构静、动力特性的关系模型(元模型);其次,分别以桥梁静动力测试结果作为有限元模型修正的优化目标,将桥梁静动力有限元模型修正问题转化为多目标优化问题,从而克服了采用单目标优化时,结构静力特性与动力特性目标之间的权值难以选择的问题;再次,通过元模型建立及多目标优化的方法进行结构有限元模型的修正。最后,利用一座钢管混凝土拱桥的静动力试验实测结果,对所提模型修正方法的适用性进行验证。结果表明:该方法具有较好的精度和适用性,可作为大型桥梁结构静动力有限元模型修正的一种实用方法。  相似文献   

9.
以某异形拱桥为工程背景,对其进行了环境振动试验,利用频域法进行了模态参数识别,获得了前8阶模态;建立了该桥的全桥三维有限元模型,通过参数灵敏度分析选取待优化参数,以频率误差百分比平方和最小为目标函数,基于实测模态数据对有限元模型进行了模型修正。修正后参数取值合理,频率误差明显减小,得到了符合实际的基准有限元模型。  相似文献   

10.
为获得桥梁结构的基准状态,考虑测试和结构参数的不确定性,将区间分析、仿射算法引入响应面有限元模型修正方法中,建立了一种新的桥梁结构有限元不确定模型修正方法。在讨论结构特点及力学行为的基础上,选择了待修正结构参数和结构响应后,采用均匀试验设计方法获得试验样本,同时结合多样本的有限元分析,采用F检验法得到结构响应的显著性参数。基于有限元模型修正的响应面方法,构建结构的响应面替代模型后,引入区间分析算法的自然拓展,将响应面模型拓展为区间响应面函数,同时采用仿射算法解决区间分析的区间扩张问题,构建桥梁结构有限元模型的仿射-区间不确定修正方法,并采用遗传算法进行区间优化求解。另外,针对区间响应面有限元模型修正的具体需求,提出了区间响应面函数的两步验证方法。用斜拉桥振动台模型桥梁在不同工况下的测试模态参数和斜拉索索力,对其进行有限元模型的不确定修正,实现了实测响应与有限元计算响应间误差的最小化。区间响应面函数的两步验证证实了参数修正范围和结构响应的有效性和正确性,修正后结构纵向、横向、竖向的一阶,二阶频率以及索力的实测响应均在计算响应范围内。验证结果表明:所提有限元不确定模型修正方法,能有效实现桥梁结构有限元模型的修正。  相似文献   

11.
服役多年的桥梁由于受环境和车辆的影响,依据设计资料建立的有限元模型已不能准确地反映桥梁的实际受力性能。该文以某桥为背景,对该桥2片服役20年的PC空心板梁进行破坏试验以及有限元建模,利用BP神经网络对有限元模型进行修正。首先以不同的结构参数条件下有限元模型跨中位移作为输入,以对应的箍筋、纵筋、钢绞线、混凝土的弹性模量及混凝土泊松比等结构参数作为输出,计算出有限元模型的设计参数。研究表明:服役20年的PC空心板梁仍具有良好的刚度与弹性恢复能力;修正后的有限元模型与实际结构的物理状态非常接近,挠度误差均在5%以内;修正后的钢绞线弹性模量与试验值吻合良好,证明修正结果的准确性和合理性。  相似文献   

12.
结合结构的设计资料,建立结构的初始有限元模型.通过现场实测获得桥梁结构的动力参数和拟静力应变影响线,将其作为模型修正依据,利用有限元修正技术,反演桥梁结构的实际力学模型.通过该模型可仿真现场静载试验,实现对桥梁结构力学性能的快速评定.实际应用结果表明:应用动静参数联合反演得到的桥梁结构的力学模型能够客观地反映桥梁的实际力学性能,可实现对桥梁结构的快速仿真分析.  相似文献   

13.
宁波招宝山大桥是曾经严重事故、后经局部拆除加固重建的大型独塔不对称斜拉桥,目前成桥状态十分复杂。为了评估大桥的使用性能和建立桥梁健康监测系统,需要符合实际结构的有限元分析计算模型。在采用精细的有限元模型基础上,以实际测量的动态试验数据为依据,应用基于灵敏度分析为基础的模型修正法,对结构有限元模型进行了修正。基于振型的模态确认准则的相关性计算表明,修正后的有限元模型比较好的反映了结构的实际状态,由此计算分析了成桥状态的动力特性。相关结果可为后续结构健康检测、损伤评估与维修管理提供必要的技术支持。  相似文献   

14.
提出了基于有限元模型修正的单车通过多梁式桥梁的移动荷载识别方法.首先采用Butterworth低通滤波器对现场采集到的24 h内所有过桥车辆产生的桥梁动位移信号进行滤波处理,提取静力响应极值,并严格按照车型进行分类统计;其次,对观测桥梁进行基于静力试验的有限元模型修正,建立能够反映桥梁真实状态的基准有限元模型;最后将修正后的有限元模型输入至自行研发的BDANS软件中的多梁式车-桥耦合振动模块,以车型为单位,依据该车型车辆在桥面横向移动时各主梁竖向位移响应分配关系,结合多梁式车-桥耦合振动模块以及实测车辆过桥时各主梁静力极值响应,识别出车辆在桥面行驶的横向位置,然后根据识别出的车辆横向行驶位置和实测桥梁响应识别出车质量.结果表明:该识别方法较为可靠,识别精度较高,能按照车型批量进行识别,可大规模处理交通荷载数据.  相似文献   

15.
目前,在各种评定桥梁结构状态的方法中,荷载试验仍然是较为直接的方法,比较香港昂船洲大桥、苏通长江大桥、武汉天兴洲长江大桥的成桥荷载试验异同点发现:香港昂船洲大桥在桥梁结构设计时就已包含健康监测系统的设计,其成桥荷载试验基于英国规范,兼有通车鉴定、为健康监测有限元模型修正提供参数、检定健康监测硬件系统等多样化的目标;内地荷载试验基于相关检测规范,主要面向于竣工验收.建议内地的荷载试验项目考虑有限元模型修正的工作,将修正后的有限元模型作为荷载试验的成果之一提交,为桥梁后续承载力评估提供连续一致的原始资料.对于确定安装健康监测系统的特大型桥梁,应使该系统对桥梁结构的全寿命周期提供连续监测,进而提高管养水平.  相似文献   

16.
基于传统参数型模型修正方法,通过将悬索桥主缆划分为多段,并将每段主缆的弹性模量均作为独立的模型修正参数,提出了一种针对大跨径悬索桥有限元模型修正的改进方法——优化参数型模型修正方法。首先,根据对拟定参数的灵敏度计算选定灵敏度较大的参数;然后,进行多次有限元计算求取参数灵敏度矩阵;最后,优化参数识别条件,识别模型修正参数值。依托世界第一大跨径分体式钢箱梁悬索桥——西堠门大桥,建立桥梁结构有限元模型,并采用优化参数型方法进行模型修正。结果表明:修正所得模型各测点误差均小于5%,模型整体和局部响应与桥梁实际状态十分吻合,该方法可推广应用于大跨径悬索桥的模型修正。  相似文献   

17.
基于模型修正梁格法的车桥耦合振动分析系统   总被引:2,自引:0,他引:2  
首先以一座钢桁架连续梁桥为工程实例,建立尽可能考虑结构特点的初始有限元模型,并结合现场试验采集的静、动力实测数据,建立考虑变形、频率及振型等静、动力信息的多目标函数,通过有限元模型修正获得能够反映结构真实状态的基准有限元模型;其次介绍了梁格法桥梁车桥耦合振动分析模块以及静载试验整车加载模块编制思路,并嵌入自行研发的桥梁结构动力分析软件BDANS;最后将修正后的有限元模型输入至自行研发的梁格法车桥静动力分析模块,并将静动力荷载工况下的实测响应、BDANS计算值与通用软件ANSYS计算值三者进行了相互校核和对比。结果表明:BDANS静力分析模块的计算结果与ANSYS静力计算结果完全吻合,BDANS动力分析模块在不同行车工况下的动力计算响应趋势与实测响应趋势保持一致,从而验证了该分析模块的可靠性。  相似文献   

18.
混凝土桥梁结构及材料参数在服役期间处于动态变化过程(如材料劣化),在桥梁完工投入运营之后再测定桥梁的材料或者结构参数较为困难,且采用基于桥梁初始设计参数建立的有限元模型来对其进行模拟的精度有限。为建立考虑结构损伤的在役混凝土斜拉桥的高精度有限元模型,提出了一种基于桥梁荷载试验的混凝土斜拉桥有限元模型修正方法。首先以一座混凝土斜拉桥为依托工程,建立了桥梁初始Midas有限元模型。在考虑混凝土斜拉桥结构特点、施工误差以及可能出现的结构损伤部位的基础上,选取4个结构参数及1个试验参数作为待修正参数。根据依托工程桥梁荷载试验特点及常规试验内容,选择了4个覆盖了结构静、动力特性的指标作为目标函数,根据有限元计算结果建立了待修正参数与目标函数之间的响应面方程。最后根据依托工程荷载试验的结果,结合响应面方程对初始有限元模型进行了修正。结果表明:采用修正后参数的计算结果与实际桥梁施工情况相符,修正后的桥梁有限元模型具有较高精度,可较好地反映出实际桥梁工程在弹性阶段的静、动力力学状态;所提出方法可通过桥梁荷载试验来反推桥梁当前状况下的参数状态,实现对桥梁结构的精确模拟,该方法不仅适用于新建桥梁也可对长期运营的桥梁的结构状态进行反推和模拟。  相似文献   

19.
利用大型通用有限元程序建立了金华双龙大桥主桥——中承式钢管混凝土拱桥的三维空间有限元模型,计算了桥梁结构的稳定安全系数,对桥梁的失稳特征进行了分析。  相似文献   

20.
为进一步了解大跨度桥梁的结构状态,本文通过对桥梁荷载试验期间的监测系统实时监测数据、现场试验测量数据和大桥有限元模型模拟计算数据的对比挖掘分析,以定量化的形式通过与结构状态相关的参数指标,评估桥梁的结构状态。以国内某新建大跨悬索桥为例,通过安装的健康监测系统采集桥梁在静载试验条件下各控制截面的挠度、应变、振动等结构响应实时监测数据,计算桥梁挠度和应变特征值,采用频谱分析等方法计算大桥的模态参数,然后基于挠度、应变、模态参数的监测结果与现场试验测量结果、有限元模型计算结果的对比分析,并参照现场荷载试验评定方法,评估桥梁的结构状态。实验结果表明:监测系统时程数据可观测到明显的加载和卸载情况,监测系统运行良好,在试验荷载下桥梁处于弹性工作状态,整理受力状态良好,大桥结构整体刚度满足设计荷载的正常使用要求。作为新建桥梁,该评估结果还可作为桥梁的初始状态,作为后续评估桥梁结构状态和健康监测系统工作状况的参考基准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号