首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Pollution by marine fuels and their influence on ecosystems and the human populace are growing concerns in the maritime industry. Consequently, emission regulations, alternate marine fuels and fuel efficiency enhancements are being pursued to ensure that marine emissions are curtailed within acceptable limits. Many strategic decisions related to these areas are taken based on cost and emission estimates which in turn depend on the accuracy of the estimation of marine fuel consumptions. The estimates are based on various methodologies which attempt to capture maritime fuel consumptions at local, regional and global levels. The bottom-up approach is the most predominant method to estimate emissions and thereby to assess compliance with the emissions regulations. The bottom-up methodologies rely heavily on average values of specific fuel consumptions and engine load factors. A case study which utilizes in-situ data is conducted to investigate the accuracy of the current approach and the results are compared with the estimates based on bottom-up approaches found in the literature. The findings revealed significant variations between the estimates and the actual fuel consumptions informing implications of unrealistic cost and emission estimates. As a solution the paper suggests a new concept in order to establish more reliable estimations of fuel consumptions and hence emissions predictions.  相似文献   

2.
This paper explores the influence of key factors such as speed, acceleration, and road grade on fuel consumption for diesel and hydrogen fuel cell buses under real-world operating conditions. A Vehicle Specific Power-based approach is used for modeling fuel consumption for both types of buses. To evaluate the robustness of the modeling approach, Vehicle Specific Power-based modal average fuel consumption rates are compared for diesel buses in the US and Portugal, and for the Portuguese diesel and hydrogen fuel cell buses that operate on the same route. For diesel buses there is similar intra-vehicle variability in fuel consumption using Vehicle Specific Power modes. For the fuel cell bus, the hydrogen fuel consumption rate was found to be less sensitive to Vehicle Specific Power variations and had smaller variability compared to diesel buses. Relative errors between trip fuel consumption estimates and actual fuel use, based upon predictions for a portion of real-world activity data that were not used to calibrate the models, were generally under 10% for all observations. The Vehicle Specific Power-based modeling approach is recommended for further applications as additional data become available. Emission changes based upon substituting hydrogen versus diesel buses are evaluated.  相似文献   

3.
The potential for improving the fuel economy of conventional, gasoline-powered automobiles through optimized application of recent technology advances is analyzed. Results are presented at three levels of technical certainty, ranging from technologies already in use to technologies facing technical constraints (such as emissions control problems) which might inhibit widespread use. A fleet-aggregate, engineering-economic analysis is used to estimate a range of U.S. new car fleet average fuel economy levels achievable given roughly 10 years of lead time. Technology cost estimates are compared to fuel savings in order to determine likely cost-effective levels of fuel economy, which are found to range from 39 miles per gallon to 51 miles per gallon depending on technology certainty level. The corresponding estimated increases in average new car price range from $540 to $790 (1993$). Estimated fuel savings payback times average less than 3 years and the cost of conserved energy averages $0.50 per gallon, indicating that these levels of fuel economy improvement are cost-effective over a vehicle lifetime. A vehicle stock turnover model is used to project the reductions in gasoline consumption and associated emissions that would follow if the estimated fuel economy levels are achieved. Potential trade-offs regarding vehicle performance, safety, and emissions are also discussed.  相似文献   

4.
This paper builds a model for estimating the fuel consumption of a taxiing aircraft using flight data recorder information from operational aircraft. The taxi fuel burn is modeled as a linear function of several potential explanatory variables including the taxi time, number of stops, number of turns and number of acceleration events, and the coefficients are estimated using least-squares regression. The statistical significance of each potential factor is investigated. Our analysis shows that in addition to the taxi time, the number of acceleration events is a significant factor in determining taxi fuel consumption. Since the model parameters are estimated using data from operational aircraft, they provide more accurate estimates of fuel burn than methods that use idealized physical models of fuel consumption based on aircraft velocity profiles, or the baseline fuel consumption estimates provided by the International Civil Aviation Organization.  相似文献   

5.
A brief summary of road traffic‐related elasticity estimates as reported in the international literature is given. An indication of the orders of magnitude of these elasticities is outlined and the variation in estimates commonly found is emphasized. The results of previous extensive surveys are collated, but a wider scope of traffic‐related research is provided by reviewing recent work and including research that has received less attention. A variety of elasticity measures related to car travel, car ownership, freight traffic and fuel demand are reported. Based on the review, some important themes underpinning the demand for road traffic are revealed.  相似文献   

6.
High rates of oil consumption and obesity in the US have become important socioeconomic concerns. While these concerns may seem unrelated at first, growing obesity rates in the US increase fuel consumption by adding passenger weight to vehicles. This paper estimates the additional amount of fuel (i.e., gasoline) consumed annually by noncommercial passenger highway vehicles in the US due to passenger overweight and obesity. The mathematical model presented in this paper estimates that as many as one billion additional gallons of gasoline are consumed each year due to overweight and obesity in the US, accounting for up to 0.8% of the fuel consumed by these vehicles annually. This additional fuel consumption causes carbon dioxide emissions of up to 20 billion pounds or more, accounting for up to 0.5% of the annual carbon dioxide emissions in the transportation sector.  相似文献   

7.
Estimates of global aviation fuel burn and emissions are currently nearly 10 years out of date. Here, the development of the Aircraft Performance Model Implementation (APMI) software which is used to update global commercial aviation fuel burn and emissions estimates is described. The results from APMI are compared with published estimates obtained using the US Federal Aviation Administration’s System for Assessing Aviation’s Global Emissions (SAGE) for the year 2006. The number of global departures modelled with the APMI software is 8% lower compared with SAGE and reflects the difference between their commercial air traffic statistics data sources. The mission fuel burn, CO2 and H2O estimates from APMI are approximately 20% lower than those predicted by SAGE for 2006 while the estimate for the total global aircraft SOx emissions is approximately 40% lower. The estimates for the emissions of CO, HC and NOx are 10%, 140% and 30% higher than those predicted by SAGE respectively. The reasons for these differences are discussed in detail.  相似文献   

8.
This paper estimates the benefits, in terms of fuel and time, which continuous climb operations can save during the cruise phase of the flights, assuming maximum range operations. Based on previous works, a multiphase optimal control problem is solved by means of numerical optimization and using accurate aircraft performance data from the manufacturer. Optimal conventional trajectories (subject to current air traffic management practices and constraints) are computed and compared with ideal continuous operations only subject to aircraft performance constraints. Trip fuel and time for both concepts of operations are quantified for two aircraft types (a narrow-body and a wide-body airplane) and a representative set of different trip distances and landing masses. Results show that the continuous cruise phase can lead to fuel savings ranging from 0.5% to 2% for the Airbus A320, while for an Airbus A340 the dispersion is lower and savings lie in between 1% and 2%. Interestingly, trip time is also reduced between 1% and 5%.  相似文献   

9.
Concerns about local air pollution and climate change have prompted all levels of government to consider a variety of policies to reduce vehicle dependence and fuel consumption, as the transportation sector is one of the largest sources of local and global emissions. Because many of the policy options under consideration are market-based (e.g., gasoline tax, carbon tax), it is important to consider how the impacts would vary across space and affect different subpopulations. Evaluating incidence is relevant for both the expected costs and benefits of a particular policy, however detailed data on vehicle-miles traveled (VMT) and fuel consumption allowing for the distributions of these variables to be estimated at a fine geographic scale is rarely available. This paper uses a unique dataset with more than 20 million vehicles in California to derive estimates of VMT and fuel consumption in order to examine the spatial distribution of impacts for an increase in the price of gasoline as well as the consequences of using different statistics for policy evaluation. Results show that VMT and fuel consumption distributions are not symmetrically distributed and vary significantly within transportation planning regions. To understand the potential implications of this asymmetry, we do a back of the envelope comparison using the mean and mode of the VMT or fuel consumption distribution for policy analysis. We find that assuming a symmetric distribution can lead to a divergence of 20–40% from the estimates based on the empirical distribution. Our results, therefore, introduce caution in interpreting the incidence of policies targeting the transportation sector based on averages.  相似文献   

10.
This paper provides fuel price elasticity estimates for single-unit truck activity, where single-unit trucks are defined as vehicles on a single frame with either (1) at least two axles and six tires; or (2) a gross vehicle weight greater than 10,000 lb. Using data from 1980 to 2012, this paper applies first-difference and error correction models and finds that single-unit truck activity is sensitive to certain macroeconomic and infrastructure factors (gross domestic product, lane miles expansion, and housing construction), but is not sensitive to diesel fuel prices. These results suggest that fuel price elasticities of single unit truck activity are inelastic. These results may be used by policymakers in considering policies that have a direct impact on fuel prices, or policies whose effects may be equivalent to fuel price adjustments.  相似文献   

11.
We estimate the elasticities of fuel and travel demand with respect to fuel prices and income in the case of Norway. Furthermore, we derive the direct rebound effects that explain the degree to which a fuel price increase is “offset” in the form of greater fuel use and/or travel due to improvements in vehicle fuel efficiency. For this purpose, we use and compare two alternative econometric approaches: the error correction model (ECM) and the dynamic model. Our initial assumption is that one should not be indifferent with respect to the approach used to derive elasticities. The data used are for the period 1980–2011. Our results indicate the following: (1) the dynamic model fits the data better than the ECM model does; (2) the estimated elasticities of fuel demand with respect to price and income are −0.26 and 0.06 in the short run and −0.36 and 0.09 in the long run. For travel demand, the respective elasticities are −0.11 and 0.06 in the short run and −0.24 and 0.13 in the long run, implying inelastic demands for fuel and travel demand; and (3) rebound effects indicate that 0.26% and 0.06% of fuel savings as a result of fuel price increase will be offset in the form of more fuel use in the short run and in the long run, respectively, if fuel efficiency increases by 1%. Our policy recommendations are that policies should not be indifferent to the methods used to derive elasticities. We contend that it is crucial to seriously consider rebound effects in policy making because basic elasticity estimates exaggerate the impact of fuel price increases.  相似文献   

12.
In this paper, typical flight paths, fuel burn and carbon dioxide (CO2) emissions are computed using a rich data set and two estimation approaches: (i) a clustering and landmark registration technique and (ii) a method based on the EUROCONTROL’s Base of Aircraft Data (BADA) performance model. Clustering is employed to extract flight characteristics and organize altitude profiles accordingly. Our flight path and CO2 emissions analysis focuses on the Climb-Cruise-Descent (CCD) cycle, since different operational conditions during the Landing and Take-off cycle may result in significant deviations in terms of fuel burn and CO2 emissions and different modeling assumptions and approaches should be adopted. The key features of the CCD cycle are the flight distance, the aircraft type and the flight direction. Path segmentation and landmark registration are employed for path representation and smoothening of discontinuities. The paths estimated by the above method are compared to those obtained by the point mass BADA model. Noticeable deviations in the resulting estimates of the operational characteristics are found. Higher deviations in prediction errors are found in the climb and descent duration and the rate of climb and descent. The typical altitude profiles obtained by the two methods are used to determine fuel burn and CO2 emissions. The difference in the resulting estimates are less stark; on a fleet-wide level the fuel burn of the relevant typical profiles differ by 7%. Emission maps of the U.S. airspace enabling the identification of critical emission spots including routes, airports, seasons and aircraft type are constructed.  相似文献   

13.
This paper conducts a comparative discrete choice analysis to estimate consumers’ willingness to pay (WTP) for electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) on the basis of the same stated preference survey carried out in the US and Japan in 2012. We also carry out a comparative analysis across four US states. We find that on average US consumers are more sensitive to fuel cost reductions and alternative fuel station availability than are Japanese consumers. With regard to the comparative analysis across the four US states, consumers’ WTP for a fuel cost reduction in California is considerably greater than in the other three states. We use the estimates obtained in the discrete choice analysis to examine the EV/PHEV market shares under several scenarios. In a base case scenario with relatively realistic attribute levels, conventional gasoline vehicles still dominate both in the US and Japan. However, in an innovation scenario with a significant purchase price reduction, we observe a high penetration of alternative fuel vehicles both in the US and Japan. We illustrate the potential use of a discrete choice analysis for forward-looking policy analysis, with the future opportunity to compare its predictions against actual revealed choices. In this case, increased purchase price subsidies are likely to have a significant impact on the market shares of alternative fuel vehicles.  相似文献   

14.
This paper estimates fuel demand models for the Lisbon Metropolitan Area (AML) and uses the demand elasticities obtained to predict future levels of road transport CO2 greenhouse gas emissions. Data for the municipalities constituting the AML and the period 1993–2010 are analysed using static and dynamic panel data models to measure the relative importance of fuel price, income, vehicle stock, the price of public transport, and the availability of urban and suburban rail networks on fuel demand. To the best of our knowledge, this is the first study in the Portuguese context to produce fuel demand elasticities for a specific metropolitan area, as opposed to the estimation of country-level aggregate elasticities. Our findings indicate that the elasticity of fuel demand with respect to fuel price ranges between −0.48 and −0.72 in the short run and between −1.19 and −1.82 in the long run. Income elasticities are found to range between 0.51 and 0.54 in the short run and between 1.26 and 1.37 in the long run. The elasticity of fuel demand with respect to vehicle stock (keeping population constant) is 0.57 in the short run and 1.43 in the long run. There is only weak evidence of a reduction in fuel demand as a result of a decrease in the price of public transport, and no effect of greater availability of rail networks. Based on the elasticities estimated, we predict road transport CO2 emissions for the AML according to different macroeconomic scenarios. The results indicate that the emissions target is only achieved in the scenario of poor economic performance. In the presence of medium and strong economic growth, fuel prices would need to increase by about 7% and 11% per year respectively in order to meet the emissions target.  相似文献   

15.
The Rakha-Pasumarthy-Adjerid (RPA) car-following model has been demonstrated to successfully replicate empirical driver car-following behavior. However, the validity of this model for fuel consumption and emission (FC/EM) estimation has yet to be studied. This paper attempts to address this research need by analyzing the applicability of the model for FC/EM estimation and comparing its performance to other state-of-practice car-following models; namely, the Gipps, Fritzsche and Wiedemann models. Naturalistic empirical data are employed to generate ground truth car-following events. The model-generated second-by-second Vehicle Specific Power (VSP) distributions for each car-following event are then compared to the empirical distributions. The study demonstrates that the generation of realistic VSP distributions is critical in producing accurate FC/EM estimates and that the RPA model outperforms the other three models in producing realistic vehicle trajectory VSP distributions and robust FC/EM estimates. This study also reveals that the acceleration behavior within a car-following model is one of the major contributors to producing realistic VSP distributions. The study further demonstrates that the use of trip-aggregated results may produce erroneous conclusions given that second-by-second errors may cancel each other out, and that lower VSP distribution errors occasionally result in greater bias in FC/EM estimates given the large deviation of the distribution at high VSP levels. Finally, the results of the study demonstrate the validity of the INTEGRATION micro-simulator, given that it employs the RPA car-following model, in generating realistic VSP distributions, and thus in estimating fuel consumption and emission levels.  相似文献   

16.
This paper estimates fuel price elasticities of combination trucking operations in the United States between 1970 and 2012. We evaluate trucking operations in terms of vehicle miles traveled and fuel consumption for combination trucks. Our explanatory variables include measures of economic activity, energy prices, and indicator variables that account for important regulatory shifts and changes in data collection and reporting in national transportation datasets. Our results suggest that fuel price elasticities in the United States’ trucking sector have shifted from an elastic environment in the 1970s to a relatively inelastic environment today. We discuss the importance of these results for policymakers in light of new policies that aim to limit energy consumption and reduce greenhouse gas emissions from heavy-duty vehicles.  相似文献   

17.
Costs of producing “advanced” biofuels (those with the lowest GHG and land use impacts) have not decreased in recent years as envisioned by analysts. Despite aggressive policy incentives, no transition to a lower cost mature industry has occurred. Information about the cost dynamics and slow industry emergence is of major interest to policymakers and others seeking to understand the likely success – and cost – of incentive programs. This paper reviews literature on production cost at the plantgate – without considering taxes or delivery costs – for selected biofuel technology pathways using a levelized cost of fuel approach, applying common financing assumptions for capital amortization and converting all values to year 2016 dollars, and examines results in the current low carbon fuel policy context. The average production cost estimate for cellulosic ethanol was $4 per gallon-gasoline equivalent (gge). For drop-in fuels, the pyrolysis-biocrude-hydro treatment pathway had the lowest average production cost estimate at about $3.25/gge. Biomass to liquid (BTL) production cost estimates averaged $3.80/gge, while hydrotreated esters and fatty acids (HEFA) – the sole fuel studied gaining commercial traction – averaged about $3.70/gge. Estimate ranges did not allow any definitive rank ordering of the fuels by production cost. Production cost estimates are higher in later than in earlier publications for non-HEFA fuels due primarily to higher costs for feedstock and capital expenditure components. This may reflect learning from early but largely unsuccessful commercialization efforts that yielded more realistic (and higher cost) information and detail on feedstock provision and conversion processes.  相似文献   

18.
This work examines the temporal–spatial variations of daily automobile distance traveled and greenhouse gas emissions (GHGs) and their association with built environment attributes and household socio-demographics. A GHGs household inventory is determined using link-level average speeds for a large and representative sample of households in three origin–destination surveys (1998, 2003 and 2008) in Montreal, Canada. For the emission inventories, different sources of data are combined including link-level average speeds in the network, vehicle occupancy levels and fuel consumption characteristics of the vehicle fleet. Urban form indicators over time such as population density, land use mix and transit accessibility are generated for each household in each of the three waves. A latent class (LC) regression modeling framework is then implemented to investigate the association of built environment and socio-demographics with GHGs and automobile distance traveled. Among other results, it is found that population density, transit accessibility and land-use mix have small but statistically significant negative impact on GHGs and car usage. Despite that this is in accordance with past studies, the estimated elasticities are greater than those reported in the literature for North American cities. Moreover, different household subpopulations are identified in which the effect of built environment varies significantly. Also, a reduction of the average GHGs at the household level is observed over time. According to our estimates, households produced 15% and 10% more GHGs in 1998 and 2003 respectively, compared to 2008. This reduction can be associated to the improvement of the fuel economy of vehicle fleet and the decrease of motor-vehicle usage – e.g., a decrease of 4% is observed for fuel efficiency rates and 12% for distance according to the raw average estimates from 1998 with respect to 2008. A strong link is also observed between socio-demographics and the two travel outcomes. While number of workers is positively associated with car distance and GHGs, low and medium income households pollute less than high-income households.  相似文献   

19.
In this paper, the concept ‘green approaches’ already used in aviation is applied to cargo transportation at sea. Instead of anchoring outside a port waiting for berth, ships can adjust their speed to arrive just in time for berthing. With improved incentives for reducing speed and shared information about berthing times, green approaches instead of anchoring can be a way to reduce fuel consumption and emissions without increasing the transit times of goods. The present study estimates the benefits to society as a whole for the EU ports in the Baltic Sea with Automatic Identification System data applying a new method using data collected in real time. Data consists of all anchored ships awaiting berth on 40 different occasions in 2015 and are subsequently extrapolated to a year. Fuel consumption by the individual ships, emissions and values are calculated from the detailed data with established models and estimates of unit values. The potential benefits are estimated at 27 million euros per year in the scenario where the near 15,000 anchorings by ships annually awaiting berth may instead start a green approach 12 h prior to arrival and may reduce speed by 25%, using the middle unit values for fuel and emissions. The methodology used in the paper can be applied to estimate the benefits of green approaches in other areas with anchored vessels.  相似文献   

20.
This paper estimates the role that technological change and car characteristics have played in the rate of fuel consumption of vehicles over time. Using data from the Spanish car market from 1988 to 2013, we estimate a reduced form equation that relates fuel consumption with a set of car characteristics. The results for the sales-weighted sample of vehicles show that energy efficiency would have improved by 30% and 42% for petrol and diesel cars respectively had car characteristics been held constant at 1988 values. However, the shift to bigger and more fuel-consuming cars reduced the gains from technological progress. Additionally, using the results of the fuel equation we show that, besides a natural growth rate of 1.1%, technological progress is affected by both the international price of oil and the adoption of mandatory emission standards. Moreover, according to our estimations, a 1% growth in GDP would modify car characteristics in such a way that fuel consumption would increase by around 0.23% for petrol cars and 0.35% for diesel cars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号