首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Circular motion test data and uncertainty analysis results of investigations of the hydrodynamic characteristics of ship maneuvering are presented. The model ships used were a container ship and two tankers, and the measured items were the surge and sway forces, yaw moment, propeller thrust, rudder normal and tangential forces, pitch and roll angles, and heave. The test parameters were the oblique angle and yaw rate for the conditions of a hull with a rudder and propeller in which the rudder angle was set to zero and the propeller speed was set to the model self-propulsion conditions. Carriage data showing the accuracy of the towing conditions in the circular motion test are also presented. It was confirmed that the uncertainties in the hydrodynamic forces such as the surge and sway forces, yaw moment, rudder tangential and normal forces, and propeller thrust were fairly small. The reported uncertainty analysis results of the circular motion test data may be beneficial in validating data quality and in discussing reliability for simulation of ship maneuvering performance.  相似文献   

2.
The behavior of a ship in regular waves during maneuvering was studied by using a two-time scale model. The maneuvering analysis was based on Söding’s (Schiffstechnik 1982; 29:3–29) nonlinear slender-body theory generalized to account for heel. Forces and moments due to rudder, propeller, and viscous cross-flow follow from the state-of-the-art procedures. The developed unified theory of seakeeping and maneuvering was verified and validated for calm water by comparing it with experimental and calculated zigzag and circle maneuvers. Linear wave-induced motions and loads were determined by generalizing the Salvesen-Tuck-Faltinsen (Trans SNAME 1970; 78:250–287) strip theory. The mean second-order wave loads in incident regular deep water waves in oblique sea conditions were estimated by the potential flow theories of Faltinsen et al. (Proc 13th Symp Naval Hydrody 1980), Salvesen (Proc Intl Symp Dynam Mar Vehicl Struct Wave 1974), and Loukakis and Sclavounos (J Ship Res 1978; 22:1–19). The considered theories cover the whole range of important wavelengths. Comparisons between the different mean second-order wave load theories and available experimental data were carried out for different ship hull forms when the ship was advancing forward on a straight course. The mentioned methods have been incorporated into the maneuvering model. Their applicability from the perspective of the maneuvering ability of the selected types of ships was investigated in given wave environments. The wave conditions are valid for realistic maneuvering cases in open coastal areas. It was demonstrated that the incident waves may have an important influence on the maneuvering behavior of a ship. The added resistance, mean second-order transverse force, and yaw moment also play important roles.  相似文献   

3.
船舶在波浪中操纵运动仿真   总被引:3,自引:1,他引:2  
本文研究了双浆双舵船在规则波中的回转运动,首先进行了约束模型试验,得到了操纵运动数学模型中的水动力系数,然后,进行了静水操纵运动数值仿真,并与自航模型试验结果进行了比较。最后,预报船舶在规则波中的回转运动,对一些影响回转运动的因素进行了讨论。  相似文献   

4.
A finite-volume method of computing the viscous flow field about a ship in maneuvering motion was developed. The time-dependent Navier-Stokes equation discretized in the generalized boundary-fitted curvilinear coordinate system is solved numerically. A third-order upwind differencing scheme, a marker and cell (MAC)-type explicit time marching solution algorithm and a simplified subgrid scale (SGS) turbulence model are adopted. The simulation method is formulated, including the movement of a computational grid fitted to the body boundary that allows computation of the flow field around a body under unsteady motion. To estimate the maneuvering ability of a ship, the accurate prediction of the hydrodynamic forces and moments of the hull is important. Therefore, experimental methods of finding the hydrodynamic forces of a ship in maneuvering motion, such as the oblique towing test, the circular motion test (CMT) and planar motion mechanism (PMM) test, were established. Numerical simulation methods for those captive model experiments were developed introducing computational fluid dynamics (CFD). First, numerical methods for steady oblique tow and steady turn simulation were developed and then extended to unsteady forced motion. Simulations were conducted about several realistic hulls, and the results were verified by comparisons with measured results obtained in model experiments. Hydrodynamic forces and the moment, the longitudinal distribution of the hydrodynamic lateral force, and the pressure distribution on the hull surface showed good agreement.  相似文献   

5.
以船舶操纵水动力预报为研究背景,通过对商用计算流体力学软件FLUENT的二次开发,采用其动网格技术以及后处理系统,对大型船舶操纵水动力导数进行了数值计算.船体按照斜航、不同舵角、纯横荡和纯首摇等状态做运动,得出随船坐标系下作用于其上的水动力及力矩.通过进行基于最小二乘法的曲线拟合,最终求得船舶操纵水动力导数.计算结果与势流理论计算结果一致,表明了所提出的计算方法适用于复杂船舶运动的水动力导数计算.  相似文献   

6.
The maneuvering characteristics of a large container ship with twin propellers and twin rudders were investigated using the horizontal planar motion mechanism (HPMM) test and computer simulation. A mathematical model for maneuvering motion with four degrees of freedom (DOF) for twin-propeller and twin-rudder systems was developed and included the effects of roll motion. To obtain the roll-coupling hydrodynamic coefficients of a container ship, a four-DOF HPMM system having a roll motion mechanism and a roll moment measurement system was used. At the full load condition, HPMM tests were carried out for two different 12 000-TEU container ship models, one with twin propellers and the other with a single propeller. Using the hydrodynamic coefficients obtained from the tests, computer simulations were carried out. Simulation results for the container ship with twin propellers and twin rudders were compared with the results for the container ship with a single propeller and single rudder.  相似文献   

7.
吴建林 《船舶工程》2020,42(10):74-77
基于MMG分离式建模思想,考虑作用在船体、螺旋桨、舵、鳍的水动力作用,建立双桨双舵船舶四自由度非线性数学运动模型,对某船模在静水中的回转性能进行仿真分析,将单独舵控制的仿真结果与船模试验结果进行了验证和分析,并对比了单独舵控制和舵、鳍联合控制下的回转性能,结果表明鳍参与控制回转时能明显缓解回转过程中的横倾。  相似文献   

8.
建立并求解高速排水艇稳定回转的运动方程。对运动方程中裸船体和附体的水动力导数、舵作用力和力矩、多个螺旋桨对回转的影响等进行估算。并以120t级渔政船为例,进行稳定回转直径和横倾角的计算,并与实船的试航结果进行比较。  相似文献   

9.
To estimate the maneuvering ability of a ship, an accurate estimation of the hydrodynamic forces and moment acting on the ship's hull is indispensable. For the purpose of developing a numerical method of computing the viscous flow field around a hull and evaluating its validity, the hydrodynamic pressure on the hull and the velocity field were measured. Two full ship models with different hull forms in the aft part were used for the experiment. From the results of pressure measurements, the distribution of hydrodynamic lateral forces was obtained. The simulation method is a numerical solution of the Navier-Stokes equation based on a finitevolume method and applied to the maneuvering motion. The measured and computed results agree qualitatively well, and the method is a valuable tool for estimating the maneuvering ability of a ship. The typical characteristics of the flow field in the steady turning condition are revealed by the numerical simulation, and the mechanism of the relations between hull form, flow field, and hydrodynamic forces are clarified.Translation and combination of articles that appeared in the Journal of the Society of Naval Architects of Japan, vols. 176, 177, 179 (1994–1996): The original article won the SNAJ prize, which is awarded annually to the best papers selected from the SNAJ Journal, JMST, or other quality journals in the field of naval architecture and ocean engineering.This work was conducted as part of the joint SR221 project supported by JSRA (Shipbuilding Research Association of Japan). The authors express their sincere gratitude to the persons concerned, and especially to M. Kanai, S. Eguchi, S. Usami, K. Tatsumi, and T. Kawamura.  相似文献   

10.
定常回转直径作为衡量船舶操纵性的一个指标受到人们的普遍重视。为提高船舶的回转性能,基于船舶四自由度的操纵性方程,分析船舶回转直径和回转横倾,讨论影响回转性能的舵型因素,并将其作为优化设计变量,利用Isight优化设计平台,采用遗传算法进行舵型参数的优化设计。通过选取某高速船作为优化对象,利用该方法进行舵型优化后,回转直径及回转横倾都减小。表明借助Isight的优化功能可以实现船舶操纵性能的优化。  相似文献   

11.
This paper presents the numerical analysis of rudder cavitation in propeller slipstream and the development of a new rudder system aimed for lift augmentation and cavitation suppression. The new rudder system is equipped with cam devices which effectively close the gap between the horn/pintle and movable wing parts. A computational fluid dynamics code that solves the Reynolds-averaged Navier–Stokes equations is used to analyze the flow field of various rudder systems in propeller slipstream. The body force momentum source terms that mimic flow field behind a rotating propeller are added in the momentum equations to represent the influence of the propeller and its slipstream. For detailed explication of the new rudder system’s lift augmentation and cavitation suppression mechanism, three-dimensional flow analysis is carried out. Simulations clearly display the mechanism of the lift augmentation and cavitation suppression. The computational results suggest that the Reynolds-averaged Navier–Stokes-based computational fluid dynamics reproduces the flow field around a rudder in propeller slipstream and that the present concept for a cavitation suppressing rudder system is highly feasible and warrant further study for inclusion of the interaction with hull and mechanical design for manufacturing and operations.  相似文献   

12.
Small water-plane area twin-hull(SWATH) has drawn the attention of many researchers due to its good sea-keeping ability.In this paper,MMG's idea of separation was used to perform SWATH movement modeling and simulation;respectively the forces and moment of SWATH were divided into bare hull,propeller,rudder at the fluid hydrodynamics,etc.Wake coefficient at the propellers which reduces thrust coefficient,and rudder mutual interference forces among the hull and propeller,for the calculation of SWATH,were all considered.The fourth-order Runge-Kutta method of integration was used by solving differential equations,in order to get SWATH's movement states.As an example,a turning test at full speed and full starboard rudder of ‘Seagull' craft is shown.The simulation results show the SWATH's regular pattern and trend of motion.It verifies the correctness of the mathematical model of the turning movement.The SWATH's mathematical model is applied to marine simulator in order to train the pilots or seamen,or safety assessment for ocean engineering project.Lastly,the full mission navigation simulating system(FMNSS) was determined to be a successful virtual reality technology application sample in the field of navigation simulation.  相似文献   

13.
Mathematical model of single-propeller twin-rudder ship   总被引:1,自引:1,他引:0  
A mathematical model of a single-propeller twin-rudder ship has been developed from captive and free running model experiments. An open water rudder experiment was carried out to figure out the characteristics of the rudder. Captive experiments in a towing tank were carried out to figure out the performance of a single-propeller twin-rudder system on a large vessel. Interactions between the hull, propeller and twin rudders, including mutual interactions between the twin rudders, were expressed with several coefficients that were calculated from the experimental results at various ship speeds. In the analysis, the unique characteristics of a single-propeller twin-rudder ship, which affects rudder forces, were explained and formulated in the mathematical model. The captive model tests were conducted with zero ship’s yaw rate, so the interaction coefficients, which are influenced by the yaw rate, are determined from free running model experiments. Validation of the mathematical model of a single-propeller twin-rudder system for a blunt body ship is carried out with an independent set of free running experiments, which were not used for determining the interaction coefficients. The validated numerical model is used for carrying out simulations. Based on simulation results, some recommendations have been proposed for installing a single-propeller twin-rudder system.  相似文献   

14.
本文在对—拖轮可控环量船体约束船模试验结果的基础上进行了水动力分析,并与船体在不喷流而仅操舵情况下的受力进行了对比.结果表明:在低航速下,喷流产生的转船力矩要大于操舵产生的转船力矩;在高航速下.喷流产生的转船力矩亦可满足船舶的操纵性要求.因此,作为一种新的船舶操纵方式,将环量控制技术直接用于船舶的操纵是可能的,可大大改善船舶在低航速情况下的操纵性.由于喷流装置结构简单,无可动部件,并且基本不改变船体形状,故为实船应用提供了较为乐观的前景.  相似文献   

15.
周旭  谢畅 《造船技术》2023,(3):14-18
针对半悬挂舵和全悬挂舵回转性能差异问题,建立用于模拟螺旋桨推力的体积力模型,评估两种不同形式舵的回转性。对标模KCS船型回转运动进行计算流体动力学(Computational Fluid Dynamics,CFD)模拟,船后螺旋桨作用使用体积力模型替代。开展半悬挂舵回转性CFD模拟,并与试验结果对比验证。设计全悬挂舵并模拟其回转性,与半悬挂舵回转性进行比较。结果显示,半悬挂舵除战术直径与试验结果相差9.48%外,其他回转特性参数与试验结果相差均在3%以内,说明基于体积力法模拟回转性具有较高的可信度。全悬挂舵的回转特性参数均优于半悬挂舵,说明全悬挂舵的回转性能更佳。  相似文献   

16.
于立伟  马宁  顾解忡 《船舶力学》2016,20(4):410-418
国际海事组织(IMO)正致力于第二代完整稳性规范的制定,而参数横摇一直是船舶动态完整稳性研究的热点。文章采用考虑船舶操纵性和耐波性运动耦合的统一模型对迎浪规则波下的船舶参数横摇运动进行了时域数值模拟。在时域模型中,六自由度耐波性运动辐射绕射力采用切片理论计算,并由脉冲响应函数法转化到时域。非线性回复力和入射波力采用瞬时湿表面压力积分方法计算。操纵性运动基于MMG模型,依据统一理论将操纵性与耐波性运动进行耦合计算。文中先应用简化三自由度模型对三艘集装箱船进行了参数横摇样船计算,并进行了初步的模型实验验证,依据结果对比分析了横摇惯性矩、初稳性高和方形系数对参数横摇的影响。基于统一模型分析了操纵性运动对参数横摇的影响,并进行了参数横摇舵减摇研究。  相似文献   

17.
针对节能装置节能效果的预报仍然依赖模型试验,数值预报方法对节能效果的预报存在较多困难的问题,提出了一种基于CFD技术的整流鳍节能效果的数值预报方法。首先,研究了整体求解船-桨-舵相互干扰的水动力性能数值计算方法,计算结果与试验值的比较显示,该数值计算方法具有较好的计算精度。然后,采用上述方法预报了船-桨-舵-整流鳍相互干扰的水动力性能,通过比较有整流鳍和无整流鳍两种情况下,螺旋桨吸收单位转矩所发出的推力,分析了整流鳍的节能效果,得到了节能效果较优的整流鳍,其综合节能效果可达2.78%,从而为船舶节能装置的节能效果预报提供了一种适用的理论研究方法。  相似文献   

18.
The main objective of this paper is to develop an efficient numerical method which can predict the underwater acoustic field and pressure fluctuation on a ship hull due to unsteady propeller sheet cavitation by linear acoustic theory. In addition, the noise scattered from the ship hull and reflected from the free surface are included. Concerning the computation of the acoustic field induced by unsteady sheet cavitation and forces of a marine propeller, a method is derived without making any approximation about the distance function between the noise source and field point. Thus, this method can be used to predict acoustic pressure at both far and near fields, and this is very important for the scattering problem because the ship hull is located very close to the propeller. For the computation of the scattering problem, a more efficient and robust method is derived in time domain, which can treat multi-frequency waves scattered from underwater obstacles. The acoustic fields of a container ship radiated by the propeller and scattered from the ship hull with free surface is investigated in this paper. The pressure fluctuations of low blade rate on the ship hull induced by the propeller are also computed by the present method and are found to be similar to the results obtained by a panel method satisfying the Laplace equation for the points near the propeller due to the small retarding time. However, for the points on the ship hull away from the propeller, the differences of the results between two methods will increase.  相似文献   

19.
Reducing the fuel consumption of ships presents both economic and environmental gains. Although in the past decades,extensive studies were carried out on the flow around ship hull, it is still difficult to calculate the flow around the hull while considering propeller interaction. In this paper, the viscous flow around modern ship hulls is computed considering propeller action. In this analysis, the numerical investigation of flow around the ship is combined with propeller theory to simulate the hull-propeller interaction. Various longitudinal positions of the rudder are also analyzed to determine the effect of rudder position on propeller efficiency. First, a numerical study was performed around a bare hull using Shipflow computational fluid dynamics(CFD) code to determine free-surface wave elevation and resistance components.A zonal approach was applied to successively incorporate Bpotential flow solver^ in the region outside the boundary layer and wake, Bboundary layer solver^ in the thin boundary layer region near the ship hull, and BNavier-Stokes solver^in the wake region. Propeller open water characteristics were determined using an open-source MATLAB code Open Prop, which is based on the lifting line theory, for the moderately loaded propeller. The obtained open water test results were specified in the flow module of Shipflow for self-propulsion tests. The velocity field behind the ship was recalculated into an effective wake and given to the propeller code that calculates the propeller load. Once the load was known, it was transferred to the Reynolds-averaged Navier-Stokes(RANS) solver to simulate the propeller action. The interaction between the hull and propeller with different rudder positions was then predicted to improve the propulsive efficiency.  相似文献   

20.
A number of authors have proposed probabilistic risk based ship design for ship–ship collision, conditional to the local trading area of a vessel. The probability of collision and consequences are determined based on the traffic conditions in which a vessel is expected to operate. This paper investigates the adequacy of currently available models for impact scenarios, i.e. models linking the traffic conditions to the conditions at the moment of collision. An exploratory statistical model is presented to establish such a link. A probabilistic risk based design case study is performed for a fleet of RoPax vessels trading on a specified route in the Gulf of Finland. The available impact scenario models from the literature are compared with the developed probabilistic evasive maneuvering model. The results show that the impact scenario models have a very significant influence to the calculated hull breach probabilities. No well-justified impact scenario models are presently available and also the presented probabilistic evasive maneuvering model is burdened with uncertainty. Hence, to move toward a probabilistic risk based ship design paradigm for ship–ship collision in a local trading area, more focus and research is needed to establish a credible link.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号